69,039 research outputs found

    Attention-Guided Discriminative Region Localization and Label Distribution Learning for Bone Age Assessment

    Full text link
    Bone age assessment (BAA) is clinically important as it can be used to diagnose endocrine and metabolic disorders during child development. Existing deep learning based methods for classifying bone age use the global image as input, or exploit local information by annotating extra bounding boxes or key points. However, training with the global image underutilizes discriminative local information, while providing extra annotations is expensive and subjective. In this paper, we propose an attention-guided approach to automatically localize the discriminative regions for BAA without any extra annotations. Specifically, we first train a classification model to learn the attention maps of the discriminative regions, finding the hand region, the most discriminative region (the carpal bones), and the next most discriminative region (the metacarpal bones). Guided by those attention maps, we then crop the informative local regions from the original image and aggregate different regions for BAA. Instead of taking BAA as a general regression task, which is suboptimal due to the label ambiguity problem in the age label space, we propose using joint age distribution learning and expectation regression, which makes use of the ordinal relationship among hand images with different individual ages and leads to more robust age estimation. Extensive experiments are conducted on the RSNA pediatric bone age data set. Using no training annotations, our method achieves competitive results compared with existing state-of-the-art semi-automatic deep learning-based methods that require manual annotation. Code is available at https: //github.com/chenchao666/Bone-Age-Assessment.Comment: codes are available at https://github.com/chenchao666/Bone-Age-Assessmen

    Modeling Label Ambiguity for Neural List-Wise Learning to Rank

    Full text link
    List-wise learning to rank methods are considered to be the state-of-the-art. One of the major problems with these methods is that the ambiguous nature of relevance labels in learning to rank data is ignored. Ambiguity of relevance labels refers to the phenomenon that multiple documents may be assigned the same relevance label for a given query, so that no preference order should be learned for those documents. In this paper we propose a novel sampling technique for computing a list-wise loss that can take into account this ambiguity. We show the effectiveness of the proposed method by training a 3-layer deep neural network. We compare our new loss function to two strong baselines: ListNet and ListMLE. We show that our method generalizes better and significantly outperforms other methods on the validation and test sets

    Scene Parsing with Integration of Parametric and Non-parametric Models

    Full text link
    We adopt Convolutional Neural Networks (CNNs) to be our parametric model to learn discriminative features and classifiers for local patch classification. Based on the occurrence frequency distribution of classes, an ensemble of CNNs (CNN-Ensemble) are learned, in which each CNN component focuses on learning different and complementary visual patterns. The local beliefs of pixels are output by CNN-Ensemble. Considering that visually similar pixels are indistinguishable under local context, we leverage the global scene semantics to alleviate the local ambiguity. The global scene constraint is mathematically achieved by adding a global energy term to the labeling energy function, and it is practically estimated in a non-parametric framework. A large margin based CNN metric learning method is also proposed for better global belief estimation. In the end, the integration of local and global beliefs gives rise to the class likelihood of pixels, based on which maximum marginal inference is performed to generate the label prediction maps. Even without any post-processing, we achieve state-of-the-art results on the challenging SiftFlow and Barcelona benchmarks.Comment: 13 Pages, 6 figures, IEEE Transactions on Image Processing (T-IP) 201

    Sufficient Conditions for Idealised Models to Have No Adversarial Examples: a Theoretical and Empirical Study with Bayesian Neural Networks

    Full text link
    We prove, under two sufficient conditions, that idealised models can have no adversarial examples. We discuss which idealised models satisfy our conditions, and show that idealised Bayesian neural networks (BNNs) satisfy these. We continue by studying near-idealised BNNs using HMC inference, demonstrating the theoretical ideas in practice. We experiment with HMC on synthetic data derived from MNIST for which we know the ground-truth image density, showing that near-perfect epistemic uncertainty correlates to density under image manifold, and that adversarial images lie off the manifold in our setting. This suggests why MC dropout, which can be seen as performing approximate inference, has been observed to be an effective defence against adversarial examples in practice; We highlight failure-cases of non-idealised BNNs relying on dropout, suggesting a new attack for dropout models and a new defence as well. Lastly, we demonstrate the defence on a cats-vs-dogs image classification task with a VGG13 variant

    Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition

    Full text link
    Recognizing visual relationships among any pair of localized objects is pivotal for image understanding. Previous studies have shown remarkable progress in exploiting linguistic priors or external textual information to improve the performance. In this work, we investigate an orthogonal perspective based on feature interactions. We show that by encouraging deep message propagation and interactions between local object features and global predicate features, one can achieve compelling performance in recognizing complex relationships without using any linguistic priors. To this end, we present two new pooling cells to encourage feature interactions: (i) Contrastive ROI Pooling Cell, which has a unique deROI pooling that inversely pools local object features to the corresponding area of global predicate features. (ii) Pyramid ROI Pooling Cell, which broadcasts global predicate features to reinforce local object features.The two cells constitute a Spatiality-Context-Appearance Module (SCA-M), which can be further stacked consecutively to form our final Zoom-Net.We further shed light on how one could resolve ambiguous and noisy object and predicate annotations by Intra-Hierarchical trees (IH-tree). Extensive experiments conducted on Visual Genome dataset demonstrate the effectiveness of our feature-oriented approach compared to state-of-the-art methods (Acc@1 11.42% from 8.16%) that depend on explicit modeling of linguistic interactions. We further show that SCA-M can be incorporated seamlessly into existing approaches to improve the performance by a large margin. The source code will be released on https://github.com/gjyin91/ZoomNet.Comment: 22 pages, 9 figures, accepted by ECCV 2018, the source code will be released on https://github.com/gjyin91/ZoomNe

    A Coupled Evolutionary Network for Age Estimation

    Full text link
    Age estimation of unknown persons is a challenging pattern analysis task due to the lacking of training data and various aging mechanisms for different people. Label distribution learning-based methods usually make distribution assumptions to simplify age estimation. However, age label distributions are often complex and difficult to be modeled in a parameter way. Inspired by the biological evolutionary mechanism, we propose a Coupled Evolutionary Network (CEN) with two concurrent evolutionary processes: evolutionary label distribution learning and evolutionary slack regression. Evolutionary network learns and refines age label distributions in an iteratively learning way. Evolutionary label distribution learning adaptively learns and constantly refines the age label distributions without making strong assumptions on the distribution patterns. To further utilize the ordered and continuous information of age labels, we accordingly propose an evolutionary slack regression to convert the discrete age label regression into the continuous age interval regression. Experimental results on Morph, ChaLearn15 and MegaAge-Asian datasets show the superiority of our method

    Deep Active Object Recognition by Joint Label and Action Prediction

    Full text link
    An active object recognition system has the advantage of being able to act in the environment to capture images that are more suited for training and that lead to better performance at test time. In this paper, we propose a deep convolutional neural network for active object recognition that simultaneously predicts the object label, and selects the next action to perform on the object with the aim of improving recognition performance. We treat active object recognition as a reinforcement learning problem and derive the cost function to train the network for joint prediction of the object label and the action. A generative model of object similarities based on the Dirichlet distribution is proposed and embedded in the network for encoding the state of the system. The training is carried out by simultaneously minimizing the label and action prediction errors using gradient descent. We empirically show that the proposed network is able to predict both the object label and the actions on GERMS, a dataset for active object recognition. We compare the test label prediction accuracy of the proposed model with Dirichlet and Naive Bayes state encoding. The results of experiments suggest that the proposed model equipped with Dirichlet state encoding is superior in performance, and selects images that lead to better training and higher accuracy of label prediction at test time

    Tournament Based Ranking CNN for the Cataract grading

    Full text link
    Solving the classification problem, unbalanced number of dataset among the classes often causes performance degradation. Especially when some classes dominate the other classes with its large number of datasets, trained model shows low performance in identifying the dominated classes. This is common case when it comes to medical dataset. Because the case with a serious degree is not quite usual, there are imbalance in number of dataset between severe case and normal cases of diseases. Also, there is difficulty in precisely identifying grade of medical data because of vagueness between them. To solve these problems, we propose new architecture of convolutional neural network named Tournament based Ranking CNN which shows remarkable performance gain in identifying dominated classes while trading off very small accuracy loss in dominating classes. Our Approach complemented problems that occur when method of Ranking CNN that aggregates outputs of multiple binary neural network models is applied to medical data. By having tournament structure in aggregating method and using very deep pretrained binary models, our proposed model recorded 68.36% of exact match accuracy, while Ranking CNN recorded 53.40%, pretrained Resnet recorded 56.12% and CNN with linear regression recorded 57.48%. As a result, our proposed method is applied efficiently to cataract grading which have ordinal labels with imbalanced number of data among classes, also can be applied further to medical problems which have similar features to cataract and similar dataset configuration.Comment: Submitted to ACCV 201

    Learning to decompose the modes in few-mode fibers with deep convolutional neural network

    Full text link
    We introduce deep learning technique to perform complete mode decomposition for few-mode optical fiber for the first time. Our goal is to learn a fast and accurate mapping from near-field beam profiles to the complete mode coefficients, including both modal amplitudes and phases. We train the convolutional neural network with simulated beam patterns, and evaluate the network on both of the simulated beam data and the real beam data. In simulated beam data testing, the correlation between the reconstructed and the ideal beam profiles can achieve 0.9993 and 0.995 for 3-mode case and 5-mode case respectively. While in the real 3-mode beam data testing, the average correlation is 0.9912 and the mode decomposition can be potentially performed at 33 Hz frequency on Graphic Processing Unit, indicating real-time processing ability. The quantitative evaluations demonstrate the superiority of our deep learning based approach

    Distribution Aware Active Learning

    Full text link
    Discriminative learning machines often need a large set of labeled samples for training. Active learning (AL) settings assume that the learner has the freedom to ask an oracle to label its desired samples. Traditional AL algorithms heuristically choose query samples about which the current learner is uncertain. This strategy does not make good use of the structure of the dataset at hand and is prone to be misguided by outliers. To alleviate this problem, we propose to distill the structural information into a probabilistic generative model which acts as a \emph{teacher} in our model. The active \emph{learner} uses this information effectively at each cycle of active learning. The proposed method is generic and does not depend on the type of learner and teacher. We then suggest a query criterion for active learning that is aware of distribution of data and is more robust against outliers. Our method can be combined readily with several other query criteria for active learning. We provide the formulation and empirically show our idea via toy and real examples
    • …
    corecore