3,194 research outputs found

    Learning Character-level Compositionality with Visual Features

    Full text link
    Previous work has modeled the compositionality of words by creating character-level models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the meaning of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.Comment: Accepted to ACL 201

    Multi Sense Embeddings from Topic Models

    Get PDF
    Distributed word embeddings have yielded state-of-the-art performance in many NLP tasks, mainly due to their success in capturing useful semantic information. These representations assign only a single vector to each word whereas a large number of words are polysemous (i.e., have multiple meanings). In this work, we approach this critical problem in lexical semantics, namely that of representing various senses of polysemous words in vector spaces. We propose a topic modeling based skip-gram approach for learning multi-prototype word embeddings. We also introduce a method to prune the embeddings determined by the probabilistic representation of the word in each topic. We use our embeddings to show that they can capture the context and word similarity strongly and outperform various state-of-the-art implementations

    Can humain association norm evaluate latent semantic analysis?

    Get PDF
    This paper presents the comparison of word association norm created by a psycholinguistic experiment to association lists generated by algorithms operating on text corpora. We compare lists generated by Church and Hanks algorithm and lists generated by LSA algorithm. An argument is presented on how those automatically generated lists reflect real semantic relations

    Brain in a Vat: On Missing Pieces Towards Artificial General Intelligence in Large Language Models

    Full text link
    In this perspective paper, we first comprehensively review existing evaluations of Large Language Models (LLMs) using both standardized tests and ability-oriented benchmarks. We pinpoint several problems with current evaluation methods that tend to overstate the capabilities of LLMs. We then articulate what artificial general intelligence should encompass beyond the capabilities of LLMs. We propose four characteristics of generally intelligent agents: 1) they can perform unlimited tasks; 2) they can generate new tasks within a context; 3) they operate based on a value system that underpins task generation; and 4) they have a world model reflecting reality, which shapes their interaction with the world. Building on this viewpoint, we highlight the missing pieces in artificial general intelligence, that is, the unity of knowing and acting. We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations. Additionally, knowledge acquisition isn't solely reliant on passive input but requires repeated trials and errors. We conclude by outlining promising future research directions in the field of artificial general intelligence
    • …
    corecore