45,676 research outputs found

    Multi-Object Classification and Unsupervised Scene Understanding Using Deep Learning Features and Latent Tree Probabilistic Models

    Get PDF
    Deep learning has shown state-of-art classification performance on datasets such as ImageNet, which contain a single object in each image. However, multi-object classification is far more challenging. We present a unified framework which leverages the strengths of multiple machine learning methods, viz deep learning, probabilistic models and kernel methods to obtain state-of-art performance on Microsoft COCO, consisting of non-iconic images. We incorporate contextual information in natural images through a conditional latent tree probabilistic model (CLTM), where the object co-occurrences are conditioned on the extracted fc7 features from pre-trained Imagenet CNN as input. We learn the CLTM tree structure using conditional pairwise probabilities for object co-occurrences, estimated through kernel methods, and we learn its node and edge potentials by training a new 3-layer neural network, which takes fc7 features as input. Object classification is carried out via inference on the learnt conditional tree model, and we obtain significant gain in precision-recall and F-measures on MS-COCO, especially for difficult object categories. Moreover, the latent variables in the CLTM capture scene information: the images with top activations for a latent node have common themes such as being a grasslands or a food scene, and on on. In addition, we show that a simple k-means clustering of the inferred latent nodes alone significantly improves scene classification performance on the MIT-Indoor dataset, without the need for any retraining, and without using scene labels during training. Thus, we present a unified framework for multi-object classification and unsupervised scene understanding

    Distribution-Based Trajectory Clustering

    Full text link
    Trajectory clustering enables the discovery of common patterns in trajectory data. Current methods of trajectory clustering rely on a distance measure between two points in order to measure the dissimilarity between two trajectories. The distance measures employed have two challenges: high computational cost and low fidelity. Independent of the distance measure employed, existing clustering algorithms have another challenge: either effectiveness issues or high time complexity. In this paper, we propose to use a recent Isolation Distributional Kernel (IDK) as the main tool to meet all three challenges. The new IDK-based clustering algorithm, called TIDKC, makes full use of the distributional kernel for trajectory similarity measuring and clustering. TIDKC identifies non-linearly separable clusters with irregular shapes and varied densities in linear time. It does not rely on random initialisation and is robust to outliers. An extensive evaluation on 7 large real-world trajectory datasets confirms that IDK is more effective in capturing complex structures in trajectories than traditional and deep learning-based distance measures. Furthermore, the proposed TIDKC has superior clustering performance and efficiency to existing trajectory clustering algorithms

    Neural Collaborative Subspace Clustering

    Full text link
    We introduce the Neural Collaborative Subspace Clustering, a neural model that discovers clusters of data points drawn from a union of low-dimensional subspaces. In contrast to previous attempts, our model runs without the aid of spectral clustering. This makes our algorithm one of the kinds that can gracefully scale to large datasets. At its heart, our neural model benefits from a classifier which determines whether a pair of points lies on the same subspace or not. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. We thoroughly assess and contrast the performance of our model against various state-of-the-art clustering algorithms including deep subspace-based ones.Comment: Accepted to ICML 201

    An overview of clustering methods with guidelines for application in mental health research

    Get PDF
    Cluster analyzes have been widely used in mental health research to decompose inter-individual heterogeneity by identifying more homogeneous subgroups of individuals. However, despite advances in new algorithms and increasing popularity, there is little guidance on model choice, analytical framework and reporting requirements. In this paper, we aimed to address this gap by introducing the philosophy, design, advantages/disadvantages and implementation of major algorithms that are particularly relevant in mental health research. Extensions of basic models, such as kernel methods, deep learning, semi-supervised clustering, and clustering ensembles are subsequently introduced. How to choose algorithms to address common issues as well as methods for pre-clustering data processing, clustering evaluation and validation are then discussed. Importantly, we also provide general guidance on clustering workflow and reporting requirements. To facilitate the implementation of different algorithms, we provide information on R functions and librarie

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps
    • …
    corecore