36 research outputs found

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    Evaluation of Dynamic Range Reconstruction Approaches and a Mobile Application for HDR Photo Capture

    Get PDF
    Digital photography became widespread with the global use of smartphones. However, most of the captured images do not fully use the camera capabilities by storing the captured photos in a format with limited dynamic range. The subject of dynamic range expansion and reconstruction has been researched since early 2000s and recently gave rise to several new reconstruction methods using convolutional neural networks (CNNs), whose performance has not yet been comprehensively compared. By implementing and using our dynamic range reconstruction evaluation framework we compare the reconstruction quality of individual CNN-based approaches. We also implement a mobile HDR camera application and evaluate the feasibility of running the best-performing reconstruction method directly on a mobile device.Použití digitální fotografie se velmi rozšířilo s popularitou chytrých telefonů. Většina pořízených fotografií však nevyužívá plně možností fotoaparátu, protože zachycené obrázky jsou ukládány ve formátu s omezeným rozsahem hodnot jasu. Problematika expanze a rekonstrukce dynamického rozsahu je zkoumána již od začátku 21. století, nově byly zveřejněny rekonstrukční metody používající konvoluční neuronové sítě, jejichž kvalita výstupu dosud nebyla dostatečně porovnána. V této práci jsme navrhli a implementovali framework pro porovnání kvality rekonstrukce, který jsme použili ke srovnání rekonstrukčních metod založených na konvolučních neuronových sítích. Také jsme implementovali aplikaci fotoaparátu pro mobilní zařízení umožňující zachycení vysokého rozsahu hodnot jasu a dále jsme zhodnotili praktičnost provádění rekonstrukce dynamického rozsahu pomocí nejlepší z porovnaných metod, přímo na mobilním zařízení.Katedra softwaru a výuky informatikyDepartment of Software and Computer Science EducationMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Photometric calibration of high dynamic range cameras

    No full text

    Non-parametric Methods for Automatic Exposure Control, Radiometric Calibration and Dynamic Range Compression

    Get PDF
    Imaging systems are essential to a wide range of modern day applications. With the continuous advancement in imaging systems, there is an on-going need to adapt and improve the imaging pipeline running inside the imaging systems. In this thesis, methods are presented to improve the imaging pipeline of digital cameras. Here we present three methods to improve important phases of the imaging process, which are (i) ``Automatic exposure adjustment'' (ii) ``Radiometric calibration'' (iii) ''High dynamic range compression''. These contributions touch the initial, intermediate and final stages of imaging pipeline of digital cameras. For exposure control, we propose two methods. The first makes use of CCD-based equations to formulate the exposure control problem. To estimate the exposure time, an initial image was acquired for each wavelength channel to which contrast adjustment techniques were applied. This helps to recover a reference cumulative distribution function of image brightness at each channel. The second method proposed for automatic exposure control is an iterative method applicable for a broad range of imaging systems. It uses spectral sensitivity functions such as the photopic response functions for the generation of a spectral power image of the captured scene. A target image is then generated using the spectral power image by applying histogram equalization. The exposure time is hence calculated iteratively by minimizing the squared difference between target and the current spectral power image. Here we further analyze the method by performing its stability and controllability analysis using a state space representation used in control theory. The applicability of the proposed method for exposure time calculation was shown on real world scenes using cameras with varying architectures. Radiometric calibration is the estimate of the non-linear mapping of the input radiance map to the output brightness values. The radiometric mapping is represented by the camera response function with which the radiance map of the scene is estimated. Our radiometric calibration method employs an L1 cost function by taking advantage of Weisfeld optimization scheme. The proposed calibration works with multiple input images of the scene with varying exposure. It can also perform calibration using a single input with few constraints. The proposed method outperforms, quantitatively and qualitatively, various alternative methods found in the literature of radiometric calibration. Finally, to realistically represent the estimated radiance maps on low dynamic range display (LDR) devices, we propose a method for dynamic range compression. Radiance maps generally have higher dynamic range (HDR) as compared to the widely used display devices. Thus, for display purposes, dynamic range compression is required on HDR images. Our proposed method generates few LDR images from the HDR radiance map by clipping its values at different exposures. Using contrast information of each LDR image generated, the method uses an energy minimization approach to estimate the probability map of each LDR image. These probability maps are then used as label set to form final compressed dynamic range image for the display device. The results of our method were compared qualitatively and quantitatively with those produced by widely cited and professionally used methods

    Contrast enhancement and exposure correction using a structure-aware distribution fitting

    Get PDF
    Realce de contraste e correção de exposição são úteis em aplicações domésticas e técnicas, no segundo caso como uma etapa de pré-processamento para outras técnicas ou para ajudar a observação humana. Frequentemente, uma transformação localmente adaptativa é mais adequada para a tarefa do que uma transformação global. Por exemplo, objetos e regiões podem ter níveis de iluminação muito diferentes, fenômenos físicos podem comprometer o contraste em algumas regiões mas não em outras, ou pode ser desejável ter alta visibilidade de detalhes em todas as partes da imagem. Para esses casos, métodos de realce de imagem locais são preferíveis. Embora existam muitos métodos de realce de contraste e correção de exposição disponíveis na literatura, não há uma solução definitiva que forneça um resultado satisfatório em todas as situações, e novos métodos surgem a cada ano. Em especial, os métodos tradicionais baseados em equalização adaptativa de histograma sofrem dos efeitos checkerboard e staircase e de excesso de realce. Esta dissertação propõe um método para realce de contraste e correção de exposição em imagens chamado Structure-Aware Distribution Stretching (SADS). O método ajusta regionalmente à imagem um modelo paramétrico de distribuição de probabilidade, respeitando a estrutura da imagem e as bordas entre as regiões. Isso é feito usando versões regionais das expressões clássicas de estimativa dos parâmetros da distribuição, que são obtidas substituindo a mé- dia amostral presente nas expressões originais por um filtro de suavização que preserva as bordas. Após ajustar a distribuição, a função de distribuição acumulada (CDF) do modelo ajustado e a inversa da CDF da distribuição desejada são aplicadas. Uma heurística ciente de estrutura que detecta regiões suaves é proposta e usada para atenuar as transformações em regiões planas. SADS foi comparado a outros métodos da literatura usando métricas objetivas de avaliação de qualidade de imagem (IQA) sem referência e com referência completa nas tarefas de realce de contraste e correção de exposição simultâneos e na tarefa de defogging/dehazing. Os experimentos indicam um desempenho geral superior do SADS em relação aos métodos comparados para os conjuntos de imagens usados, de acordo com as métricas IQA adotadas.Contrast enhancement and exposure correction are useful in domestic and technical applications, the latter as a preprocessing step for other techniques or for aiding human observation. Often, a locally adaptive transformation is more suitable for the task than a global transformation. For example, objects and regions may have very different levels of illumination, physical phenomena may compromise the contrast at some regions but not at others, or it may be desired to have high visibility of details in all parts of the image. For such cases, local image enhancement methods are preferable. Although there are many contrast enhancement and exposure correction methods available in the literature, there is no definitive solution that provides a satisfactory result in all situations, and new methods emerge each year. In special, traditional adaptive histogram equalization-based methods suffer from checkerboard and staircase effects and from over enhancement. This dissertation proposes a method for contrast enhancement and exposure correction in images named Structure-Aware Distribution Stretching (SADS). The method fits a parametric model of probability distribution to the image regionally while respecting the image structure and edges between regions. This is done using regional versions of the classical expressions for estimating the parameters of the distribution, which are obtained by replacing the sample mean present in the original expressions by an edge-preserving smoothing filter. After fitting the distribution, the cumulative distribution function (CDF) of the adjusted model and the inverse of the CDF of the desired distribution are applied. A structure-aware heuristic to indicate smooth regions is proposed and used to attenuate the transformations in flat regions. SADS was compared with other methods from the literature using objective no-reference and full-reference image quality assessment (IQA) metrics in the tasks of simultaneous contrast enhancement and exposure correction and in the task of defogging/dehazing. The experiments indicate a superior overall performance of SADS with respect to the compared methods for the image sets used, according to the IQA metrics adopted

    Learning geometric and lighting priors from natural images

    Get PDF
    Comprendre les images est d’une importance cruciale pour une pléthore de tâches, de la composition numérique au ré-éclairage d’une image, en passant par la reconstruction 3D d’objets. Ces tâches permettent aux artistes visuels de réaliser des chef-d’oeuvres ou d’aider des opérateurs à prendre des décisions de façon sécuritaire en fonction de stimulis visuels. Pour beaucoup de ces tâches, les modèles physiques et géométriques que la communauté scientifique a développés donnent lieu à des problèmes mal posés possédant plusieurs solutions, dont généralement une seule est raisonnable. Pour résoudre ces indéterminations, le raisonnement sur le contexte visuel et sémantique d’une scène est habituellement relayé à un artiste ou un expert qui emploie son expérience pour réaliser son travail. Ceci est dû au fait qu’il est généralement nécessaire de raisonner sur la scène de façon globale afin d’obtenir des résultats plausibles et appréciables. Serait-il possible de modéliser l’expérience à partir de données visuelles et d’automatiser en partie ou en totalité ces tâches ? Le sujet de cette thèse est celui-ci : la modélisation d’a priori par apprentissage automatique profond pour permettre la résolution de problèmes typiquement mal posés. Plus spécifiquement, nous couvrirons trois axes de recherche, soient : 1) la reconstruction de surface par photométrie, 2) l’estimation d’illumination extérieure à partir d’une seule image et 3) l’estimation de calibration de caméra à partir d’une seule image avec un contenu générique. Ces trois sujets seront abordés avec une perspective axée sur les données. Chacun de ces axes comporte des analyses de performance approfondies et, malgré la réputation d’opacité des algorithmes d’apprentissage machine profonds, nous proposons des études sur les indices visuels captés par nos méthodes.Understanding images is needed for a plethora of tasks, from compositing to image relighting, including 3D object reconstruction. These tasks allow artists to realize masterpieces or help operators to safely make decisions based on visual stimuli. For many of these tasks, the physical and geometric models that the scientific community has developed give rise to ill-posed problems with several solutions, only one of which is generally reasonable. To resolve these indeterminations, the reasoning about the visual and semantic context of a scene is usually relayed to an artist or an expert who uses his experience to carry out his work. This is because humans are able to reason globally on the scene in order to obtain plausible and appreciable results. Would it be possible to model this experience from visual data and partly or totally automate tasks? This is the topic of this thesis: modeling priors using deep machine learning to solve typically ill-posed problems. More specifically, we will cover three research axes: 1) surface reconstruction using photometric cues, 2) outdoor illumination estimation from a single image and 3) camera calibration estimation from a single image with generic content. These three topics will be addressed from a data-driven perspective. Each of these axes includes in-depth performance analyses and, despite the reputation of opacity of deep machine learning algorithms, we offer studies on the visual cues captured by our methods

    Image enhancement methods and applications in computational photography

    Get PDF
    Computational photography is currently a rapidly developing and cutting-edge topic in applied optics, image sensors and image processing fields to go beyond the limitations of traditional photography. The innovations of computational photography allow the photographer not only merely to take an image, but also, more importantly, to perform computations on the captured image data. Good examples of these innovations include high dynamic range imaging, focus stacking, super-resolution, motion deblurring and so on. Although extensive work has been done to explore image enhancement techniques in each subfield of computational photography, attention has seldom been given to study of the image enhancement technique of simultaneously extending depth of field and dynamic range of a scene. In my dissertation, I present an algorithm which combines focus stacking and high dynamic range (HDR) imaging in order to produce an image with both extended depth of field (DOF) and dynamic range than any of the input images. In this dissertation, I also investigate super-resolution image restoration from multiple images, which are possibly degraded by large motion blur. The proposed algorithm combines the super-resolution problem and blind image deblurring problem in a unified framework. The blur kernel for each input image is separately estimated. I also do not make any restrictions on the motion fields among images; that is, I estimate dense motion field without simplifications such as parametric motion. While the proposed super-resolution method uses multiple images to enhance spatial resolution from multiple regular images, single image super-resolution is related to techniques of denoising or removing blur from one single captured image. In my dissertation, space-varying point spread function (PSF) estimation and image deblurring for single image is also investigated. Regarding the PSF estimation, I do not make any restrictions on the type of blur or how the blur varies spatially. Once the space-varying PSF is estimated, space-varying image deblurring is performed, which produces good results even for regions where it is not clear what the correct PSF is at first. I also bring image enhancement applications to both personal computer (PC) and Android platform as computational photography applications

    Quality of Experience in Immersive Video Technologies

    Get PDF
    Over the last decades, several technological revolutions have impacted the television industry, such as the shifts from black & white to color and from standard to high-definition. Nevertheless, further considerable improvements can still be achieved to provide a better multimedia experience, for example with ultra-high-definition, high dynamic range & wide color gamut, or 3D. These so-called immersive technologies aim at providing better, more realistic, and emotionally stronger experiences. To measure quality of experience (QoE), subjective evaluation is the ultimate means since it relies on a pool of human subjects. However, reliable and meaningful results can only be obtained if experiments are properly designed and conducted following a strict methodology. In this thesis, we build a rigorous framework for subjective evaluation of new types of image and video content. We propose different procedures and analysis tools for measuring QoE in immersive technologies. As immersive technologies capture more information than conventional technologies, they have the ability to provide more details, enhanced depth perception, as well as better color, contrast, and brightness. To measure the impact of immersive technologies on the viewersâ QoE, we apply the proposed framework for designing experiments and analyzing collected subjectsâ ratings. We also analyze eye movements to study human visual attention during immersive content playback. Since immersive content carries more information than conventional content, efficient compression algorithms are needed for storage and transmission using existing infrastructures. To determine the required bandwidth for high-quality transmission of immersive content, we use the proposed framework to conduct meticulous evaluations of recent image and video codecs in the context of immersive technologies. Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently, researchers have developed objective metrics to automatically predict quality. To measure the performance of objective metrics in assessing immersive content quality, we perform several in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this aim, we use ground truth quality scores, which are collected under our subjective evaluation framework. To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D displays in particular. The proposed systems can help reducing the artifacts generated at the visualization stage, which impact picture quality, depth quality, and visual comfort. To demonstrate the effectiveness of these systems, we use the proposed framework to measure viewersâ preference between these systems and standard 2D & 3D modes. In summary, this thesis tackles the problems of measuring, predicting, and improving QoE in immersive technologies. To address these problems, we build a rigorous framework and we apply it through several in-depth investigations. We put essential concepts of multimedia QoE under this framework. These concepts not only are of fundamental nature, but also have shown their impact in very practical applications. In particular, the JPEG, MPEG, and VCEG standardization bodies have adopted these concepts to select technologies that were proposed for standardization and to validate the resulting standards in terms of compression efficiency
    corecore