55 research outputs found

    Efficient Intrinsically Motivated Robotic Grasping with Learning-Adaptive Imagination in Latent Space

    Full text link
    Combining model-based and model-free deep reinforcement learning has shown great promise for improving sample efficiency on complex control tasks while still retaining high performance. Incorporating imagination is a recent effort in this direction inspired by human mental simulation of motor behavior. We propose a learning-adaptive imagination approach which, unlike previous approaches, takes into account the reliability of the learned dynamics model used for imagining the future. Our approach learns an ensemble of disjoint local dynamics models in latent space and derives an intrinsic reward based on learning progress, motivating the controller to take actions leading to data that improves the models. The learned models are used to generate imagined experiences, augmenting the training set of real experiences. We evaluate our approach on learning vision-based robotic grasping and show that it significantly improves sample efficiency and achieves near-optimal performance in a sparse reward environment.Comment: In: Proceedings of the Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob), Oslo, Norway, Aug. 19-22, 201

    Evaluating task-agnostic exploration for fixed-batch learning of arbitrary future tasks

    Full text link
    Deep reinforcement learning has been shown to solve challenging tasks where large amounts of training experience is available, usually obtained online while learning the task. Robotics is a significant potential application domain for many of these algorithms, but generating robot experience in the real world is expensive, especially when each task requires a lengthy online training procedure. Off-policy algorithms can in principle learn arbitrary tasks from a diverse enough fixed dataset. In this work, we evaluate popular exploration methods by generating robotics datasets for the purpose of learning to solve tasks completely offline without any further interaction in the real world. We present results on three popular continuous control tasks in simulation, as well as continuous control of a high-dimensional real robot arm. Code documenting all algorithms, experiments, and hyper-parameters is available at https://github.com/qutrobotlearning/batchlearning

    Machine Learning Meets Advanced Robotic Manipulation

    Full text link
    Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works

    Deep reinforcement learning in robotics and dialog systems

    Get PDF
    • …
    corecore