7,379 research outputs found

    Object-Oriented Dynamics Learning through Multi-Level Abstraction

    Full text link
    Object-based approaches for learning action-conditioned dynamics has demonstrated promise for generalization and interpretability. However, existing approaches suffer from structural limitations and optimization difficulties for common environments with multiple dynamic objects. In this paper, we present a novel self-supervised learning framework, called Multi-level Abstraction Object-oriented Predictor (MAOP), which employs a three-level learning architecture that enables efficient object-based dynamics learning from raw visual observations. We also design a spatial-temporal relational reasoning mechanism for MAOP to support instance-level dynamics learning and handle partial observability. Our results show that MAOP significantly outperforms previous methods in terms of sample efficiency and generalization over novel environments for learning environment models. We also demonstrate that learned dynamics models enable efficient planning in unseen environments, comparable to true environment models. In addition, MAOP learns semantically and visually interpretable disentangled representations.Comment: Accepted to the Thirthy-Fourth AAAI Conference On Artificial Intelligence (AAAI), 202

    Differential rotation of relativistic superfluid in neutron stars

    Full text link
    It is shown how to set up a mathematically elegant and fully relativistic superfluid model that can provide a realistic approximation (neglecting small anisotropies due to crust solidity, magnetic fields, et cetera, but allowing for the regions with vortex pinning) of the global structure of a rotating neutron star, in terms of just two independently moving constituents, one of which represents the differentially rotating neutron superfluid, while the other part represents the combination of all the other ingredients, including the degenerate electrons, the superfluid protons in the core, and the ions in the crust, whose electromagnetic interactions will tend to keep them locked together in a state of approximately rigid rotation. Order of magnitude estimates are provided for relevant parameters such as the resistive drag coefficient and the maximum pinning force.Comment: 35 pages, Latex, no figure, submitted to M.N.R.A.

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Learning a Structured Neural Network Policy for a Hopping Task

    Full text link
    In this work we present a method for learning a reactive policy for a simple dynamic locomotion task involving hard impact and switching contacts where we assume the contact location and contact timing to be unknown. To learn such a policy, we use optimal control to optimize a local controller for a fixed environment and contacts. We learn the contact-rich dynamics for our underactuated systems along these trajectories in a sample efficient manner. We use the optimized policies to learn the reactive policy in form of a neural network. Using a new neural network architecture, we are able to preserve more information from the local policy and make its output interpretable in the sense that its output in terms of desired trajectories, feedforward commands and gains can be interpreted. Extensive simulations demonstrate the robustness of the approach to changing environments, outperforming a model-free gradient policy based methods on the same tasks in simulation. Finally, we show that the learned policy can be robustly transferred on a real robot.Comment: IEEE Robotics and Automation Letters 201
    corecore