6,088 research outputs found

    Painterly Image Harmonization via Adversarial Residual Learning

    Full text link
    Image compositing plays a vital role in photo editing. After inserting a foreground object into another background image, the composite image may look unnatural and inharmonious. When the foreground is photorealistic and the background is an artistic painting, painterly image harmonization aims to transfer the style of background painting to the foreground object, which is a challenging task due to the large domain gap between foreground and background. In this work, we employ adversarial learning to bridge the domain gap between foreground feature map and background feature map. Specifically, we design a dual-encoder generator, in which the residual encoder produces the residual features added to the foreground feature map from main encoder. Then, a pixel-wise discriminator plays against the generator, encouraging the refined foreground feature map to be indistinguishable from background feature map. Extensive experiments demonstrate that our method could achieve more harmonious and visually appealing results than previous methods.Comment: Accepted by WACV202

    Inharmonious Region Localization by Magnifying Domain Discrepancy

    Full text link
    Inharmonious region localization aims to localize the region in a synthetic image which is incompatible with surrounding background. The inharmony issue is mainly attributed to the color and illumination inconsistency produced by image editing techniques. In this work, we tend to transform the input image to another color space to magnify the domain discrepancy between inharmonious region and background, so that the model can identify the inharmonious region more easily. To this end, we present a novel framework consisting of a color mapping module and an inharmonious region localization network, in which the former is equipped with a novel domain discrepancy magnification loss and the latter could be an arbitrary localization network. Extensive experiments on image harmonization dataset show the superiority of our designed framework. Our code is available at https://github.com/bcmi/MadisNet-Inharmonious-Region-Localization

    Learning Global-aware Kernel for Image Harmonization

    Full text link
    Image harmonization aims to solve the visual inconsistency problem in composited images by adaptively adjusting the foreground pixels with the background as references. Existing methods employ local color transformation or region matching between foreground and background, which neglects powerful proximity prior and independently distinguishes fore-/back-ground as a whole part for harmonization. As a result, they still show a limited performance across varied foreground objects and scenes. To address this issue, we propose a novel Global-aware Kernel Network (GKNet) to harmonize local regions with comprehensive consideration of long-distance background references. Specifically, GKNet includes two parts, \ie, harmony kernel prediction and harmony kernel modulation branches. The former includes a Long-distance Reference Extractor (LRE) to obtain long-distance context and Kernel Prediction Blocks (KPB) to predict multi-level harmony kernels by fusing global information with local features. To achieve this goal, a novel Selective Correlation Fusion (SCF) module is proposed to better select relevant long-distance background references for local harmonization. The latter employs the predicted kernels to harmonize foreground regions with both local and global awareness. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods, \eg, achieving 39.53dB PSNR that surpasses the best counterpart by +0.78dB ↑\uparrow; decreasing fMSE/MSE by 11.5\%↓\downarrow/6.7\%↓\downarrow compared with the SoTA method. Code will be available at \href{https://github.com/XintianShen/GKNet}{here}.Comment: 10 pages, 10 figure

    LEMaRT: Label-Efficient Masked Region Transform for Image Harmonization

    Full text link
    We present a simple yet effective self-supervised pre-training method for image harmonization which can leverage large-scale unannotated image datasets. To achieve this goal, we first generate pre-training data online with our Label-Efficient Masked Region Transform (LEMaRT) pipeline. Given an image, LEMaRT generates a foreground mask and then applies a set of transformations to perturb various visual attributes, e.g., defocus blur, contrast, saturation, of the region specified by the generated mask. We then pre-train image harmonization models by recovering the original image from the perturbed image. Secondly, we introduce an image harmonization model, namely SwinIH, by retrofitting the Swin Transformer [27] with a combination of local and global self-attention mechanisms. Pre-training SwinIH with LEMaRT results in a new state of the art for image harmonization, while being label-efficient, i.e., consuming less annotated data for fine-tuning than existing methods. Notably, on iHarmony4 dataset [8], SwinIH outperforms the state of the art, i.e., SCS-Co [16] by a margin of 0.4 dB when it is fine-tuned on only 50% of the training data, and by 1.0 dB when it is trained on the full training dataset.Comment: Accepted by CVPR'23, 19 page

    Painterly Image Harmonization using Diffusion Model

    Full text link
    Painterly image harmonization aims to insert photographic objects into paintings and obtain artistically coherent composite images. Previous methods for this task mainly rely on inference optimization or generative adversarial network, but they are either very time-consuming or struggling at fine control of the foreground objects (e.g., texture and content details). To address these issues, we propose a novel Painterly Harmonization stable Diffusion model (PHDiffusion), which includes a lightweight adaptive encoder and a Dual Encoder Fusion (DEF) module. Specifically, the adaptive encoder and the DEF module first stylize foreground features within each encoder. Then, the stylized foreground features from both encoders are combined to guide the harmonization process. During training, besides the noise loss in diffusion model, we additionally employ content loss and two style losses, i.e., AdaIN style loss and contrastive style loss, aiming to balance the trade-off between style migration and content preservation. Compared with the state-of-the-art models from related fields, our PHDiffusion can stylize the foreground more sufficiently and simultaneously retain finer content. Our code and model are available at https://github.com/bcmi/PHDiffusion-Painterly-Image-Harmonization.Comment: Accepted by ACMMM 202
    • …
    corecore