271 research outputs found

    Improving Representation Learning for Deep Clustering and Few-shot Learning

    Get PDF
    The amounts of data in the world have increased dramatically in recent years, and it is quickly becoming infeasible for humans to label all these data. It is therefore crucial that modern machine learning systems can operate with few or no labels. The introduction of deep learning and deep neural networks has led to impressive advancements in several areas of machine learning. These advancements are largely due to the unprecedented ability of deep neural networks to learn powerful representations from a wide range of complex input signals. This ability is especially important when labeled data is limited, as the absence of a strong supervisory signal forces models to rely more on intrinsic properties of the data and its representations. This thesis focuses on two key concepts in deep learning with few or no labels. First, we aim to improve representation quality in deep clustering - both for single-view and multi-view data. Current models for deep clustering face challenges related to properly representing semantic similarities, which is crucial for the models to discover meaningful clusterings. This is especially challenging with multi-view data, since the information required for successful clustering might be scattered across many views. Second, we focus on few-shot learning, and how geometrical properties of representations influence few-shot classification performance. We find that a large number of recent methods for few-shot learning embed representations on the hypersphere. Hence, we seek to understand what makes the hypersphere a particularly suitable embedding space for few-shot learning. Our work on single-view deep clustering addresses the susceptibility of deep clustering models to find trivial solutions with non-meaningful representations. To address this issue, we present a new auxiliary objective that - when compared to the popular autoencoder-based approach - better aligns with the main clustering objective, resulting in improved clustering performance. Similarly, our work on multi-view clustering focuses on how representations can be learned from multi-view data, in order to make the representations suitable for the clustering objective. Where recent methods for deep multi-view clustering have focused on aligning view-specific representations, we find that this alignment procedure might actually be detrimental to representation quality. We investigate the effects of representation alignment, and provide novel insights on when alignment is beneficial, and when it is not. Based on our findings, we present several new methods for deep multi-view clustering - both alignment and non-alignment-based - that out-perform current state-of-the-art methods. Our first work on few-shot learning aims to tackle the hubness problem, which has been shown to have negative effects on few-shot classification performance. To this end, we present two new methods to embed representations on the hypersphere for few-shot learning. Further, we provide both theoretical and experimental evidence indicating that embedding representations as uniformly as possible on the hypersphere reduces hubness, and improves classification accuracy. Furthermore, based on our findings on hyperspherical embeddings for few-shot learning, we seek to improve the understanding of representation norms. In particular, we ask what type of information the norm carries, and why it is often beneficial to discard the norm in classification models. We answer this question by presenting a novel hypothesis on the relationship between representation norm and the number of a certain class of objects in the image. We then analyze our hypothesis both theoretically and experimentally, presenting promising results that corroborate the hypothesis

    Advancing efficiency and robustness of neural networks for imaging

    Get PDF
    Enabling machines to see and analyze the world is a longstanding research objective. Advances in computer vision have the potential of influencing many aspects of our lives as they can enable machines to tackle a variety of tasks. Great progress in computer vision has been made, catalyzed by recent progress in machine learning and especially the breakthroughs achieved by deep artificial neural networks. Goal of this work is to alleviate limitations of deep neural networks that hinder their large-scale adoption for real-world applications. To this end, it investigates methodologies for constructing and training deep neural networks with low computational requirements. Moreover, it explores strategies for achieving robust performance on unseen data. Of particular interest is the application of segmenting volumetric medical scans because of the technical challenges it imposes, as well as its clinical importance. The developed methodologies are generic and of relevance to a broader computer vision and machine learning audience. More specifically, this work introduces an efficient 3D convolutional neural network architecture, which achieves high performance for segmentation of volumetric medical images, an application previously hindered by high computational requirements of 3D networks. It then investigates sensitivity of network performance on hyper-parameter configuration, which we interpret as overfitting the model configuration to the data available during development. It is shown that ensembling a set of models with diverse configurations mitigates this and improves generalization. The thesis then explores how to utilize unlabelled data for learning representations that generalize better. It investigates domain adaptation and introduces an architecture for adversarial networks tailored for adaptation of segmentation networks. Finally, a novel semi-supervised learning method is proposed that introduces a graph in the latent space of a neural network to capture relations between labelled and unlabelled samples. It then regularizes the embedding to form a compact cluster per class, which improves generalization.Open Acces

    Unsupervised Learning of Latent Structure from Linear and Nonlinear Measurements

    Get PDF
    University of Minnesota Ph.D. dissertation. June 2019. Major: Electrical Engineering. Advisor: Nicholas Sidiropoulos. 1 computer file (PDF); xii, 118 pages.The past few decades have seen a rapid expansion of our digital world. While early dwellers of the Internet exchanged simple text messages via email, modern citizens of the digital world conduct a much richer set of activities online: entertainment, banking, booking for restaurants and hotels, just to name a few. In our digitally enriched lives, we not only enjoy great convenience and efficiency, but also leave behind massive amounts of data that offer ample opportunities for improving these digital services, and creating new ones. Meanwhile, technical advancements have facilitated the emergence of new sensors and networks, that can measure, exchange and log data about real world events. These technologies have been applied to many different scenarios, including environmental monitoring, advanced manufacturing, healthcare, and scientific research in physics, chemistry, bio-technology and social science, to name a few. Leveraging the abundant data, learning-based and data-driven methods have become a dominating paradigm across different areas, with data analytics driving many of the recent developments. However, the massive amount of data also bring considerable challenges for analytics. Among them, the collected data are often high-dimensional, with the true knowledge and signal of interest hidden underneath. It is of great importance to reduce data dimension, and transform the data into the right space. In some cases, the data are generated from certain generative models that are identifiable, making it possible to reduce the data back to the original space. In addition, we are often interested in performing some analysis on the data after dimensionality reduction (DR), and it would be helpful to be mindful about these subsequent analysis steps when performing DR, as latent structures can serve as a valuable prior. Based on this reasoning, we develop two methods, one for the linear generative model case, and the other one for the nonlinear case. In a related setting, we study parameter estimation under unknown nonlinear distortion. In this case, the unknown nonlinearity in measurements poses a severe challenge. In practice, various mechanisms can introduce nonlinearity in the measured data. To combat this challenge, we put forth a nonlinear mixture model, which is well-grounded in real world applications. We show that this model is in fact identifiable up to some trivial indeterminancy. We develop an efficient algorithm to recover latent parameters of this model, and confirm the effectiveness of our theory and algorithm via numerical experiments

    Proactive Interference-aware Resource Management in Deep Learning Training Cluster

    Get PDF
    Deep Learning (DL) applications are growing at an unprecedented rate across many domains, ranging from weather prediction, map navigation to medical imaging. However, training these deep learning models in large-scale compute clusters face substantial challenges in terms of low cluster resource utilisation and high job waiting time. State-of-the-art DL cluster resource managers are needed to increase GPU utilisation and maximise throughput. While co-locating DL jobs within the same GPU has been shown to be an effective means towards achieving this, co-location subsequently incurs performance interference resulting in job slowdown. We argue that effective workload placement can minimise DL cluster interference at scheduling runtime by understanding the DL workload characteristics and their respective hardware resource consumption. However, existing DL cluster resource managers reserve isolated GPUs to perform online profiling to directly measure GPU utilisation and kernel patterns for each unique submitted job. Such a feedback-based reactive approach results in additional waiting times as well as reduced cluster resource efficiency and availability. In this thesis, we propose Horus: an interference-aware and prediction-based DL cluster resource manager. Through empirically studying a series of microbenchmarks and DL workload co-location combinations across heterogeneous GPU hardware, we demonstrate the negative effects of performance interference when colocating DL workload, and identify GPU utilisation as a general proxy metric to determine good placement decisions. From these findings, we design Horus, which in contrast to existing approaches, proactively predicts GPU utilisation of heterogeneous DL workload extrapolated from the DL model computation graph features when performing placement decisions, removing the need for online profiling and isolated reserved GPUs. By conducting empirical experimentation within a medium-scale DL cluster as well as a large-scale trace-driven simulation of a production system, we demonstrate Horus improves cluster GPU utilisation, reduces cluster makespan and waiting time, and can scale to operate within hundreds of machines

    Graph embedding and geometric deep learning relevance to network biology and structural chemistry

    Get PDF
    Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning
    • …
    corecore