528 research outputs found

    Deep residual networks for automatic sleep stage classification of raw polysomnographic waveforms

    Get PDF
    We have developed an automatic sleep stage classification algorithm based on deep residual neural networks and raw polysomnogram signals. Briefly, the raw data is passed through 50 convolutional layers before subsequent classification into one of five sleep stages. Three model configurations were trained on 1850 polysomnogram recordings and subsequently tested on 230 independent recordings. Our best performing model yielded an accuracy of 84.1% and a Cohen's kappa of 0.746, improving on previous reported results by other groups also using only raw polysomnogram data. Most errors were made on non-REM stage 1 and 3 decisions, errors likely resulting from the definition of these stages. Further testing on independent cohorts is needed to verify performance for clinical use

    Sleep state classification using power spectral density and residual neural network with multichannel EEG signals.

    Get PDF
    This paper proposes a classification framework for automatic sleep stage detection in both male and female human subjects by analyzing the electroencephalogram (EEG) data of polysomnography (PSG) recorded for three regions of the human brain, i.e., the pre-frontal, central, and occipital lobes. Without considering any artifact removal approach, the residual neural network (ResNet) architecture is used to automatically learn the distinctive features of different sleep stages from the power spectral density (PSD) of the raw EEG data. The residual block of the ResNet learns the intrinsic features of different sleep stages from the EEG data while avoiding the vanishing gradient problem. The proposed approach is validated using the sleep dataset of the Dreams database, which comprises of EEG signals for 20 healthy human subjects, 16 female and 4 male. Our experimental results demonstrate the effectiveness of the ResNet based approach in identifying different sleep stages in both female and male subjects compared to state-of-the-art methods with classification accuracies of 87.8% and 83.7%, respectively

    Automatic sleep stage classification with deep residual networks in a mixed-cohort setting

    Full text link
    Study Objectives: Sleep stage scoring is performed manually by sleep experts and is prone to subjective interpretation of scoring rules with low intra- and interscorer reliability. Many automatic systems rely on few small-scale databases for developing models, and generalizability to new datasets is thus unknown. We investigated a novel deep neural network to assess the generalizability of several large-scale cohorts. Methods: A deep neural network model was developed using 15684 polysomnography studies from five different cohorts. We applied four different scenarios: 1) impact of varying time-scales in the model; 2) performance of a single cohort on other cohorts of smaller, greater or equal size relative to the performance of other cohorts on a single cohort; 3) varying the fraction of mixed-cohort training data compared to using single-origin data; and 4) comparing models trained on combinations of data from 2, 3, and 4 cohorts. Results: Overall classification accuracy improved with increasing fractions of training data (0.25%\%: 0.782 ±\pm 0.097, 95%\% CI [0.777-0.787]; 100%\%: 0.869 ±\pm 0.064, 95%\% CI [0.864-0.872]), and with increasing number of data sources (2: 0.788 ±\pm 0.102, 95%\% CI [0.787-0.790]; 3: 0.808 ±\pm 0.092, 95%\% CI [0.807-0.810]; 4: 0.821 ±\pm 0.085, 95%\% CI [0.819-0.823]). Different cohorts show varying levels of generalization to other cohorts. Conclusions: Automatic sleep stage scoring systems based on deep learning algorithms should consider as much data as possible from as many sources available to ensure proper generalization. Public datasets for benchmarking should be made available for future research.Comment: Author's original version. This article has been accepted for publication in SLEEP published by Oxford University Pres

    ProductGraphSleepNet: Sleep Staging using Product Spatio-Temporal Graph Learning with Attentive Temporal Aggregation

    Full text link
    The classification of sleep stages plays a crucial role in understanding and diagnosing sleep pathophysiology. Sleep stage scoring relies heavily on visual inspection by an expert that is time consuming and subjective procedure. Recently, deep learning neural network approaches have been leveraged to develop a generalized automated sleep staging and account for shifts in distributions that may be caused by inherent inter/intra-subject variability, heterogeneity across datasets, and different recording environments. However, these networks ignore the connections among brain regions, and disregard the sequential connections between temporally adjacent sleep epochs. To address these issues, this work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint spatio-temporal graphs along with a bidirectional gated recurrent unit and a modified graph attention network to capture the attentive dynamics of sleep stage transitions. Evaluation on two public databases: the Montreal Archive of Sleep Studies (MASS) SS3; and the SleepEDF, which contain full night polysomnography recordings of 62 and 20 healthy subjects, respectively, demonstrates performance comparable to the state-of-the-art (Accuracy: 0.867;0.838, F1-score: 0.818;0.774 and Kappa: 0.802;0.775, on each database respectively). More importantly, the proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.Comment: 9 pages, 6 figure

    REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild

    Full text link
    In recent years, significant attention has been devoted towards integrating deep learning technologies in the healthcare domain. However, to safely and practically deploy deep learning models for home health monitoring, two significant challenges must be addressed: the models should be (1) robust against noise; and (2) compact and energy-efficient. We propose REST, a new method that simultaneously tackles both issues via 1) adversarial training and controlling the Lipschitz constant of the neural network through spectral regularization while 2) enabling neural network compression through sparsity regularization. We demonstrate that REST produces highly-robust and efficient models that substantially outperform the original full-sized models in the presence of noise. For the sleep staging task over single-channel electroencephalogram (EEG), the REST model achieves a macro-F1 score of 0.67 vs. 0.39 achieved by a state-of-the-art model in the presence of Gaussian noise while obtaining 19x parameter reduction and 15x MFLOPS reduction on two large, real-world EEG datasets. By deploying these models to an Android application on a smartphone, we quantitatively observe that REST allows models to achieve up to 17x energy reduction and 9x faster inference. We open-source the code repository with this paper: https://github.com/duggalrahul/REST.Comment: Accepted to WWW 202

    Automatic Detection of Cortical Arousals in Sleep and their Contribution to Daytime Sleepiness

    Full text link
    Cortical arousals are transient events of disturbed sleep that occur spontaneously or in response to stimuli such as apneic events. The gold standard for arousal detection in human polysomnographic recordings (PSGs) is manual annotation by expert human scorers, a method with significant interscorer variability. In this study, we developed an automated method, the Multimodal Arousal Detector (MAD), to detect arousals using deep learning methods. The MAD was trained on 2,889 PSGs to detect both cortical arousals and wakefulness in 1 second intervals. Furthermore, the relationship between MAD-predicted labels on PSGs and next day mean sleep latency (MSL) on a multiple sleep latency test (MSLT), a reflection of daytime sleepiness, was analyzed in 1447 MSLT instances in 873 subjects. In a dataset of 1,026 PSGs, the MAD achieved a F1 score of 0.76 for arousal detection, while wakefulness was predicted with an accuracy of 0.95. In 60 PSGs scored by multiple human expert technicians, the MAD significantly outperformed the average human scorer for arousal detection with a difference in F1 score of 0.09. After controlling for other known covariates, a doubling of the arousal index was associated with an average decrease in MSL of 40 seconds (β\beta = -0.67, p = 0.0075). The MAD outperformed the average human expert and the MAD-predicted arousals were shown to be significant predictors of MSL, which demonstrate clinical validity the MAD.Comment: 40 pages, 13 figures, 9 table

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity
    corecore