4,963 research outputs found

    LEARNet Dynamic Imaging Network for Micro Expression Recognition

    Full text link
    Unlike prevalent facial expressions, micro expressions have subtle, involuntary muscle movements which are short-lived in nature. These minute muscle movements reflect true emotions of a person. Due to the short duration and low intensity, these micro-expressions are very difficult to perceive and interpret correctly. In this paper, we propose the dynamic representation of micro-expressions to preserve facial movement information of a video in a single frame. We also propose a Lateral Accretive Hybrid Network (LEARNet) to capture micro-level features of an expression in the facial region. The LEARNet refines the salient expression features in accretive manner by incorporating accretion layers (AL) in the network. The response of the AL holds the hybrid feature maps generated by prior laterally connected convolution layers. Moreover, LEARNet architecture incorporates the cross decoupled relationship between convolution layers which helps in preserving the tiny but influential facial muscle change information. The visual responses of the proposed LEARNet depict the effectiveness of the system by preserving both high- and micro-level edge features of facial expression. The effectiveness of the proposed LEARNet is evaluated on four benchmark datasets: CASME-I, CASME-II, CAS(ME)^2 and SMIC. The experimental results after investigation show a significant improvement of 4.03%, 1.90%, 1.79% and 2.82% as compared with ResNet on CASME-I, CASME-II, CAS(ME)^2 and SMIC datasets respectively.Comment: Dynamic imaging, accretion, lateral, micro expression recognitio

    Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories

    Get PDF
    In this paper, we propose a new approach for facial expression recognition using deep covariance descriptors. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By conducting the classification of static facial expressions using Support Vector Machine (SVM) with a valid Gaussian kernel on the SPD manifold, we show that deep covariance descriptors are more effective than the standard classification with fully connected layers and softmax. Besides, we propose a completely new and original solution to model the temporal dynamic of facial expressions as deep trajectories on the SPD manifold. As an extension of the classification pipeline of covariance descriptors, we apply SVM with valid positive definite kernels derived from global alignment for deep covariance trajectories classification. By performing extensive experiments on the Oulu-CASIA, CK+, and SFEW datasets, we show that both the proposed static and dynamic approaches achieve state-of-the-art performance for facial expression recognition outperforming many recent approaches.Comment: A preliminary version of this work appeared in "Otberdout N, Kacem A, Daoudi M, Ballihi L, Berretti S. Deep Covariance Descriptors for Facial Expression Recognition, in British Machine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018. ; 2018 :159." arXiv admin note: substantial text overlap with arXiv:1805.0386

    MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Face Images

    Get PDF
    This paper is aimed at creating extremely small and fast convolutional neural networks (CNN) for the problem of facial expression recognition (FER) from frontal face images. To this end, we employed the popular knowledge distillation (KD) method and identified two major shortcomings with its use: 1) a fine-grained grid search is needed for tuning the temperature hyperparameter and 2) to find the optimal size-accuracy balance, one needs to search for the final network size (or the compression rate). On the other hand, KD is proved to be useful for model compression for the FER problem, and we discovered that its effects gets more and more significant with the decreasing model size. In addition, we hypothesized that translation invariance achieved using max-pooling layers would not be useful for the FER problem as the expressions are sensitive to small, pixel-wise changes around the eye and the mouth. However, we have found an intriguing improvement on generalization when max-pooling is used. We conducted experiments on two widely-used FER datasets, CK+ and Oulu-CASIA. Our smallest model (MicroExpNet), obtained using knowledge distillation, is less than 1MB in size and works at 1851 frames per second on an Intel i7 CPU. Despite being less accurate than the state-of-the-art, MicroExpNet still provides significant insights for designing a microarchitecture for the FER problem.Comment: International Conference on Image Processing Theory, Tools and Applications (IPTA) 2019 camera ready version. Codes are available at: https://github.com/cuguilke/microexpne

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table
    • …
    corecore