18,538 research outputs found

    Deep Hierarchical Classification for Category Prediction in E-commerce System

    Full text link
    In e-commerce system, category prediction is to automatically predict categories of given texts. Different from traditional classification where there are no relations between classes, category prediction is reckoned as a standard hierarchical classification problem since categories are usually organized as a hierarchical tree. In this paper, we address hierarchical category prediction. We propose a Deep Hierarchical Classification framework, which incorporates the multi-scale hierarchical information in neural networks and introduces a representation sharing strategy according to the category tree. We also define a novel combined loss function to punish hierarchical prediction losses. The evaluation shows that the proposed approach outperforms existing approaches in accuracy.Comment: 5pages, to be published in ECNLP workshop of ACL2

    TXtract: Taxonomy-Aware Knowledge Extraction for Thousands of Product Categories

    Full text link
    Extracting structured knowledge from product profiles is crucial for various applications in e-Commerce. State-of-the-art approaches for knowledge extraction were each designed for a single category of product, and thus do not apply to real-life e-Commerce scenarios, which often contain thousands of diverse categories. This paper proposes TXtract, a taxonomy-aware knowledge extraction model that applies to thousands of product categories organized in a hierarchical taxonomy. Through category conditional self-attention and multi-task learning, our approach is both scalable, as it trains a single model for thousands of categories, and effective, as it extracts category-specific attribute values. Experiments on products from a taxonomy with 4,000 categories show that TXtract outperforms state-of-the-art approaches by up to 10% in F1 and 15% in coverage across all categories.Comment: Accepted to ACL 2020 (Long Paper

    A Unified Model with Structured Output for Fashion Images Classification

    Full text link
    A picture is worth a thousand words. Albeit a clich\'e, for the fashion industry, an image of a clothing piece allows one to perceive its category (e.g., dress), sub-category (e.g., day dress) and properties (e.g., white colour with floral patterns). The seasonal nature of the fashion industry creates a highly dynamic and creative domain with evermore data, making it unpractical to manually describe a large set of images (of products). In this paper, we explore the concept of visual recognition for fashion images through an end-to-end architecture embedding the hierarchical nature of the annotations directly into the model. Towards that goal, and inspired by the work of [7], we have modified and adapted the original architecture proposal. Namely, we have removed the message passing layer symmetry to cope with Farfetch category tree, added extra layers for hierarchy level specificity, and moved the message passing layer into an enriched latent space. We compare the proposed unified architecture against state-of-the-art models and demonstrate the performance advantage of our model for structured multi-level categorization on a dataset of about 350k fashion product images.Comment: Accepted in KDD 2018's AI for Fashion worksho

    Product Classification in E-Commerce using Distributional Semantics

    Full text link
    Product classification is the task of automatically predicting a taxonomy path for a product in a predefined taxonomy hierarchy given a textual product description or title. For efficient product classification we require a suitable representation for a document (the textual description of a product) feature vector and efficient and fast algorithms for prediction. To address the above challenges, we propose a new distributional semantics representation for document vector formation. We also develop a new two-level ensemble approach utilizing (with respect to the taxonomy tree) a path-wise, node-wise and depth-wise classifiers for error reduction in the final product classification. Our experiments show the effectiveness of the distributional representation and the ensemble approach on data sets from a leading e-commerce platform and achieve better results on various evaluation metrics compared to earlier approaches

    Don't Classify, Translate: Multi-Level E-Commerce Product Categorization Via Machine Translation

    Full text link
    E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf categories. Conventional methods for product categorization are typically based on machine learning classification algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify a product into a leaf category. In this paper, we propose a new paradigm based on machine translation. In our approach, we translate a product's natural language description into a sequence of tokens representing a root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that our approach achieves better predictive accuracy than a state-of-the-art classification system for product categorization. In addition, we demonstrate that our machine translation models can propose meaningful new paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a directed acyclic graph (DAG). We discuss how the resultant taxonomy DAG promotes user-friendly navigation, and how it is more adaptable to new products

    How to Grow a (Product) Tree: Personalized Category Suggestions for eCommerce Type-Ahead

    Full text link
    In an attempt to balance precision and recall in the search page, leading digital shops have been effectively nudging users into select category facets as early as in the type-ahead suggestions. In this work, we present SessionPath, a novel neural network model that improves facet suggestions on two counts: first, the model is able to leverage session embeddings to provide scalable personalization; second, SessionPath predicts facets by explicitly producing a probability distribution at each node in the taxonomy path. We benchmark SessionPath on two partnering shops against count-based and neural models, and show how business requirements and model behavior can be combined in a principled way

    Time Perception Machine: Temporal Point Processes for the When, Where and What of Activity Prediction

    Full text link
    Numerous powerful point process models have been developed to understand temporal patterns in sequential data from fields such as health-care, electronic commerce, social networks, and natural disaster forecasting. In this paper, we develop novel models for learning the temporal distribution of human activities in streaming data (e.g., videos and person trajectories). We propose an integrated framework of neural networks and temporal point processes for predicting when the next activity will happen. Because point processes are limited to taking event frames as input, we propose a simple yet effective mechanism to extract features at frames of interest while also preserving the rich information in the remaining frames. We evaluate our model on two challenging datasets. The results show that our model outperforms traditional statistical point process approaches significantly, demonstrating its effectiveness in capturing the underlying temporal dynamics as well as the correlation within sequential activities. Furthermore, we also extend our model to a joint estimation framework for predicting the timing, spatial location, and category of the activity simultaneously, to answer the when, where, and what of activity prediction

    Anomaly Detection for an E-commerce Pricing System

    Full text link
    Online retailers execute a very large number of price updates when compared to brick-and-mortar stores. Even a few mis-priced items can have a significant business impact and result in a loss of customer trust. Early detection of anomalies in an automated real-time fashion is an important part of such a pricing system. In this paper, we describe unsupervised and supervised anomaly detection approaches we developed and deployed for a large-scale online pricing system at Walmart. Our system detects anomalies both in batch and real-time streaming settings, and the items flagged are reviewed and actioned based on priority and business impact. We found that having the right architecture design was critical to facilitate model performance at scale, and business impact and speed were important factors influencing model selection, parameter choice, and prioritization in a production environment for a large-scale system. We conducted analyses on the performance of various approaches on a test set using real-world retail data and fully deployed our approach into production. We found that our approach was able to detect the most important anomalies with high precision.Comment: 10 pages, 4 figure

    Deep Cascade Multi-task Learning for Slot Filling in Online Shopping Assistant

    Full text link
    Slot filling is a critical task in natural language understanding (NLU) for dialog systems. State-of-the-art approaches treat it as a sequence labeling problem and adopt such models as BiLSTM-CRF. While these models work relatively well on standard benchmark datasets, they face challenges in the context of E-commerce where the slot labels are more informative and carry richer expressions. In this work, inspired by the unique structure of E-commerce knowledge base, we propose a novel multi-task model with cascade and residual connections, which jointly learns segment tagging, named entity tagging and slot filling. Experiments show the effectiveness of the proposed cascade and residual structures. Our model has a 14.6% advantage in F1 score over the strong baseline methods on a new Chinese E-commerce shopping assistant dataset, while achieving competitive accuracies on a standard dataset. Furthermore, online test deployed on such dominant E-commerce platform shows 130% improvement on accuracy of understanding user utterances. Our model has already gone into production in the E-commerce platform.Comment: AAAI 201

    Image Matters: Scalable Detection of Offensive and Non-Compliant Content / Logo in Product Images

    Full text link
    In e-commerce, product content, especially product images have a significant influence on a customer's journey from product discovery to evaluation and finally, purchase decision. Since many e-commerce retailers sell items from other third-party marketplace sellers besides their own, the content published by both internal and external content creators needs to be monitored and enriched, wherever possible. Despite guidelines and warnings, product listings that contain offensive and non-compliant images continue to enter catalogs. Offensive and non-compliant content can include a wide range of objects, logos, and banners conveying violent, sexually explicit, racist, or promotional messages. Such images can severely damage the customer experience, lead to legal issues, and erode the company brand. In this paper, we present a computer vision driven offensive and non-compliant image detection system for extremely large image datasets. This paper delves into the unique challenges of applying deep learning to real-world product image data from retail world. We demonstrate how we resolve a number of technical challenges such as lack of training data, severe class imbalance, fine-grained class definitions etc. using a number of practical yet unique technical strategies. Our system combines state-of-the-art image classification and object detection techniques with budgeted crowdsourcing to develop a solution customized for a massive, diverse, and constantly evolving product catalog.Comment: 10 page
    • …
    corecore