5,912 research outputs found

    Mercury: a vision-based framework for Driver Monitoring

    Get PDF
    In this paper, we propose a complete framework, namely Mercury, that combines Computer Vision and Deep Learning algorithms to continuously monitor the driver during the driving activity. The proposed solution complies to the require-ments imposed by the challenging automotive context: the light invariance, in or-der to have a system able to work regardless of the time of day and the weather conditions. Therefore, infrared-based images, i.e. depth maps (in which each pixel corresponds to the distance between the sensor and that point in the scene), have been exploited in conjunction with traditional intensity images. Second, the non-invasivity of the system is required, since driver’s movements must not be impeded during the driving activity: in this context, the use of camer-as and vision-based algorithms is one of the best solutions. Finally, real-time per-formance is needed since a monitoring system must immediately react as soon as a situation of potential danger is detected

    3D Human Body Pose-Based Activity Recognition for Driver Monitoring Systems

    Get PDF

    RefiNet: 3D Human Pose Refinement with Depth Maps

    Get PDF
    Human Pose Estimation is a fundamental task for many applications in the Computer Vision community and it has been widely investigated in the 2D domain, i.e. intensity images. Therefore, most of the available methods for this task are mainly based on 2D Convolutional Neural Networks and huge manually-annotated RGB datasets, achieving stunning results. In this paper, we propose RefiNet, a multi-stage framework that regresses an extremely-precise 3D human pose estimation from a given 2D pose and a depth map. The framework consists of three different modules, each one specialized in a particular refinement and data representation, i.e. depth patches, 3D skeleton and point clouds. Moreover, we present a new dataset, called Baracca, acquired with RGB, depth and thermal cameras and specifically created for the automotive context. Experimental results confirm the quality of the refinement procedure that largely improves the human pose estimations of off-the-shelf 2D methods

    Face-from-Depth for Head Pose Estimation on Depth Images

    Get PDF
    Depth cameras allow to set up reliable solutions for people monitoring and behavior understanding, especially when unstable or poor illumination conditions make unusable common RGB sensors. Therefore, we propose a complete framework for the estimation of the head and shoulder pose based on depth images only. A head detection and localization module is also included, in order to develop a complete end-to-end system. The core element of the framework is a Convolutional Neural Network, called POSEidon+, that receives as input three types of images and provides the 3D angles of the pose as output. Moreover, a Face-from-Depth component based on a Deterministic Conditional GAN model is able to hallucinate a face from the corresponding depth image. We empirically demonstrate that this positively impacts the system performances. We test the proposed framework on two public datasets, namely Biwi Kinect Head Pose and ICT-3DHP, and on Pandora, a new challenging dataset mainly inspired by the automotive setup. Experimental results show that our method overcomes several recent state-of-art works based on both intensity and depth input data, running in real-time at more than 30 frames per second

    Driver Face Verification with Depth Maps

    Get PDF
    Face verification is the task of checking if two provided images contain the face of the same person or not. In this work, we propose a fully-convolutional Siamese architecture to tackle this task, achieving state-of-the-art results on three publicly-released datasets, namely Pandora, High-Resolution Range-based Face Database (HRRFaceD), and CurtinFaces. The proposed method takes depth maps as the input, since depth cameras have been proven to be more reliable in different illumination conditions. Thus, the system is able to work even in the case of the total or partial absence of external light sources, which is a key feature for automotive applications. From the algorithmic point of view, we propose a fully-convolutional architecture with a limited number of parameters, capable of dealing with the small amount of depth data available for training and able to run in real time even on a CPU and embedded boards. The experimental results show acceptable accuracy to allow exploitation in real-world applications with in-board cameras. Finally, exploiting the presence of faces occluded by various head garments and extreme head poses available in the Pandora dataset, we successfully test the proposed system also during strong visual occlusions. The excellent results obtained confirm the efficacy of the proposed method

    Near-field Perception for Low-Speed Vehicle Automation using Surround-view Fisheye Cameras

    Full text link
    Cameras are the primary sensor in automated driving systems. They provide high information density and are optimal for detecting road infrastructure cues laid out for human vision. Surround-view camera systems typically comprise of four fisheye cameras with 190{\deg}+ field of view covering the entire 360{\deg} around the vehicle focused on near-field sensing. They are the principal sensors for low-speed, high accuracy, and close-range sensing applications, such as automated parking, traffic jam assistance, and low-speed emergency braking. In this work, we provide a detailed survey of such vision systems, setting up the survey in the context of an architecture that can be decomposed into four modular components namely Recognition, Reconstruction, Relocalization, and Reorganization. We jointly call this the 4R Architecture. We discuss how each component accomplishes a specific aspect and provide a positional argument that they can be synergized to form a complete perception system for low-speed automation. We support this argument by presenting results from previous works and by presenting architecture proposals for such a system. Qualitative results are presented in the video at https://youtu.be/ae8bCOF77uY.Comment: Accepted for publication at IEEE Transactions on Intelligent Transportation System
    • …
    corecore