11 research outputs found

    Learning reliable representations when proxy objectives fail

    Get PDF
    Representation learning involves using an objective to learn a mapping from data space to a representation space. When the downstream task for which a mapping must be learned is unknown, or is too costly to cast as an objective, we must rely on proxy objectives for learning. In this Thesis I focus on representation learning for images, and address three cases where proxy objectives fail to produce a mapping that performs well on the downstream tasks. When learning neural network mappings from image space to a discrete hash space for fast content-based image retrieval, a proxy objective is needed which captures the requirement for relevant responses to be nearer to the hash of any query than irrelevant ones. At the same time, it is important to ensure an even distribution of image hashes across the whole hash space for efficient information use and high discrimination. Proxy objectives fail when they do not meet these requirements. I propose composing hash codes in two parts. First a standard classifier is used to predict class labels that are converted to a binary representation for state-of-the-art performance on the image retrieval task. Second, a binary deep decision tree layer (DDTL) is used to model further intra-class differences and produce approximately evenly distributed hash codes. The DDTL requires no discretisation during learning and produces hash codes that enable better discrimination between data in the same class when compared to previous methods, while remaining robust to real-world augmentations in the data space. In the scenario where we require a neural network to partition the data into clusters that correspond well with ground-truth labels, a proxy objective is needed to define how these clusters are formed. One such proxy objective involves maximising the mutual information between cluster assignments made by a neural network from multiple views. In this context, views are different augmentations of the same image and the cluster assignments are the representations computed by a neural network. I demonstrate that this proxy objective produces parameters for the neural network that are sub-optimal in that a better set of parameters can be found using the same objective and a different training method. I introduce deep hierarchical object grouping (DHOG) as a method to learn a hierarchy (in the sense of easy-to-hard orderings, not structure) of solutions to the proxy objective and show how this improves performance on the downstream task. When there are features in the training data from which it is easier to compute class predictions (e.g., background colour), when compared to features for which it is relatively more difficult to compute class predictions (e.g., digit type), standard classification objectives (e.g., cross-entropy) fail to produce robust classifiers. The problem is that if a model learns to rely on `easy' features it will also ignore `complex' features (easy versus complex are purely relative in this case). I introduce latent adversarial debiasing (LAD) to decouple easy features from the class labels by first modelling the underlying structure of the training data as a latent representation using a vector-quantised variational autoencoder, and then I use a gradient-based procedure to adjust the features in this representation to confuse the predictions of a constrained classifier trained to predict class labels from the same representation. The adjusted representations of the data are then decoded to produce an augmented training dataset that can be used for training in a standard manner. I show in the aforementioned scenarios that proxy objectives can fail and demonstrate that alternative approaches can mitigate against the associated failures. I suggest an analytic approach to understanding the limits of proxy objectives for every use case in order to make the adjustments to the data or the objectives and ensure good performance on downstream tasks

    Learning to hash for large scale image retrieval

    Get PDF
    This thesis is concerned with improving the effectiveness of nearest neighbour search. Nearest neighbour search is the problem of finding the most similar data-points to a query in a database, and is a fundamental operation that has found wide applicability in many fields. In this thesis the focus is placed on hashing-based approximate nearest neighbour search methods that generate similar binary hashcodes for similar data-points. These hashcodes can be used as the indices into the buckets of hashtables for fast search. This work explores how the quality of search can be improved by learning task specific binary hashcodes. The generation of a binary hashcode comprises two main steps carried out sequentially: projection of the image feature vector onto the normal vectors of a set of hyperplanes partitioning the input feature space followed by a quantisation operation that uses a single threshold to binarise the resulting projections to obtain the hashcodes. The degree to which these operations preserve the relative distances between the datapoints in the input feature space has a direct influence on the effectiveness of using the resulting hashcodes for nearest neighbour search. In this thesis I argue that the retrieval effectiveness of existing hashing-based nearest neighbour search methods can be increased by learning the thresholds and hyperplanes based on the distribution of the input data. The first contribution is a model for learning multiple quantisation thresholds. I demonstrate that the best threshold positioning is projection specific and introduce a novel clustering algorithm for threshold optimisation. The second contribution extends this algorithm by learning the optimal allocation of quantisation thresholds per hyperplane. In doing so I argue that some hyperplanes are naturally more effective than others at capturing the distribution of the data and should therefore attract a greater allocation of quantisation thresholds. The third contribution focuses on the complementary problem of learning the hashing hyperplanes. I introduce a multi-step iterative model that, in the first step, regularises the hashcodes over a data-point adjacency graph, which encourages similar data-points to be assigned similar hashcodes. In the second step, binary classifiers are learnt to separate opposing bits with maximum margin. This algorithm is extended to learn hyperplanes that can generate similar hashcodes for similar data-points in two different feature spaces (e.g. text and images). Individually the performance of these algorithms is often superior to competitive baselines. I unify my contributions by demonstrating that learning hyperplanes and thresholds as part of the same model can yield an additive increase in retrieval effectiveness

    Continuous Variable Optimisation of Quantum Randomness and Probabilistic Linear Amplification

    Get PDF
    In the past decade, quantum communication protocols based on continuous variables (CV) has seen considerable development in both theoretical and experimental aspects. Nonetheless, challenges remain in both the practical security and the operating range for CV systems, before such systems may be used extensively. In this thesis, we present the optimisation of experimental parameters for secure randomness generation and propose a non-deterministic approach to enhance amplification of CV quantum state. The first part of this thesis examines the security of quantum devices: in particular, we investigate quantum random number generators (QRNG) and quantum key distribution (QKD) schemes. In a realistic scenario, the output of a quantum random number generator is inevitably tainted by classical technical noise, which potentially compromises the security of such a device. To safeguard against this, we propose and experimentally demonstrate an approach that produces side-information independent randomness. We present a method for maximising such randomness contained in a number sequence generated from a given quantum-to-classical-noise ratio. The detected photocurrent in our experiment is shown to have a real-time random-number generation rate of 14 (Mbit/s)/MHz. Next, we study the one-sided device-independent (1sDI) quantum key distribution scheme in the context of continuous variables. By exploiting recently proven entropic uncertainty relations, one may bound the information leaked to an eavesdropper. We use such a bound to further derive the secret key rate, that depends only upon the conditional Shannon entropies accessible to Alice and Bob, the two honest communicating parties. We identify and experimentally demonstrate such a protocol, using only coherent states as the resource. We measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 3.5 km of fibre transmission. The second part of this thesis concerns the improvement in the transmission of a quantum state. We study two approximate implementations of a probabilistic noiseless linear amplifier (NLA): a physical implementation that truncates the working space of the NLA or a measurement-based implementation that realises the truncation by a bounded postselection filter. We do this by conducting a full analysis on the measurement-based NLA (MB-NLA), making explicit the relationship between its various operating parameters, such as amplification gain and the cut-off of operating domain. We compare it with its physical counterpart in terms of the Husimi Q-distribution and their probability of success. We took our investigations further by combining a probabilistic NLA with an ideal deterministic linear amplifier (DLA). In particular, we show that when NLA gain is strictly lesser than the DLA gain, this combination can be realised by integrating an MB-NLA in an optical DLA setup. This results in a hybrid device which we refer to as the heralded hybrid quantum amplifier. A quantum cloning machine based on this hybrid amplifier is constructed through an amplify-then-split method. We perform probabilistic cloning of arbitrary coherent states, and demonstrate the production of up to five clones, with the fidelity of each clone clearly exceeding the corresponding no-cloning limit

    Visual Data Association: Tracking, Re-identification and Retrieval

    Get PDF
    As there is a rapid development of the information society, large amounts of multimedia data are generated, which are shared and transferred on various electronic devices and the Internet every minute. Hence, building intelligent systems capable of associating these visual data at diverse locations and different times is absolutely essential and will significantly facilitate understanding and identifying where an object came from and where it is going. Thus, the estimated traces of motions or changes increasingly make it feasible to implement advanced algorithms to real-world applications, including human-computer interaction, robotic navigation, security in surveillance, biological characteristics association and civil structure vibration detection. However, due to the inherent challenges, such as ambiguity, heterogeneity, noisy data, large-scale property and unknown variations, visual data association is currently far from being established. Therefore, this thesis focuses on the studies of associating visual data at diverse locations and different times for the tasks of tracking, re-identification and retrieval. More specifically, three situations including single camera, across multiple cameras and across multiple modalities have been investigated and four algorithms have been developed at different levels. Chapter 3 The first algorithm is to explore an ensemble system for robust object tracking, primarily considering the independence of classifier members. An empirical analysis is firstly given to show that object tracking is a non-i.i.d. sampling, under-sample and incomplete-dataset problem. Then, a set of independent classifiers trained sequentially on different small datasets is dynamically maintained to overcome the particular machine learning problem. Thus, for every challenge, an optimal classifier can be approximated in a subspace spanned by the selected competitive classifiers. Chapter 4 The second method is to improve the object tracking by exploiting a winner-take-all strategy to select the most suitable trackers. This topic naturally extends the concept of ensemble in the first topic to a more general idea: a multi-expert system, in which members come from different function spaces. Thus, the diversity of the system is more likely to be amplified. Based on a large public dataset, a prediction model of performance for different trackers on various challenges can be obtained off-line. Then, the learned structural regression model can be directly used to efficiently select the winner tracker online. Chapter 5 The third one is to learn cross-view identities for fast person re-identification, in a cross-camera setting, which significantly differs from the single-view object tracking in the first two topics. Two sets of discriminative hash functions for two different views are learned by simultaneously minimising their distance in the Hamming space, and maximising the cross-covariance and margin. Thus, similar binary codes can be found for images of the same person captured at different views by embedding the images into the Hamming space. Chapter 6 The fourth model is to develop a novel Hetero-manifold regularisation framework for efficient cross-modal retrieval. Compared with the first two settings, this is a more general and complex topic, in which the samples can be relaxed to the images captured in the very far distance or very long time, even to text, voice and other formats. Taking advantage of the hetero-manifold, the similarity between each pair of heterogeneous data could be naturally measured by three order random walks on this hetero-manifold. It is concluded that, by fully exploiting the algorithms for solving the problems in the three situations, an integrated trace for an object moving anywhere can be definitely discovered

    Structured representation learning from complex data

    Full text link
    This thesis advances several theoretical and practical aspects of the recently introduced restricted Boltzmann machine - a powerful probabilistic and generative framework for modelling data and learning representations. The contributions of this study represent a systematic and common theme in learning structured representations from complex data

    Deep learning for fast and robust medical image reconstruction and analysis

    Get PDF
    Medical imaging is an indispensable component of modern medical research as well as clinical practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and computational tomography (CT) are costly and are less accessible to the majority of the world. To make medical devices more accessible, affordable and efficient, it is crucial to re-calibrate our current imaging paradigm for smarter imaging. In particular, as medical imaging techniques have highly structured forms in the way they acquire data, they provide us with an opportunity to optimise the imaging techniques holistically by leveraging data. The central theme of this thesis is to explore different opportunities where we can exploit data and deep learning to improve the way we extract information for better, faster and smarter imaging. This thesis explores three distinct problems. The first problem is the time-consuming nature of dynamic MR data acquisition and reconstruction. We propose deep learning methods for accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging time. The second problem is the redundancy in our current imaging pipeline. Traditionally, imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However, we argue that one can approach them holistically and optimise the entire pipeline jointly for a specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the undersampling limit for image reconstruction. The final part of this thesis tackles the problem of interpretability of the deep learning algorithms. We propose attention-models that can implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane detection and CT segmentation. More crucially, these models can provide explainability, which is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.Open Acces

    Deep invariant feature learning for remote sensing scene classification

    Get PDF
    Image classification, as the core task in the computer vision field, has proceeded at a break­neck pace. It largely attributes to the recent growth of deep learning techniques which have blown the conventional statistical methods on a plethora of benchmarks and even can outperform humans in specific image classification tasks. Despite deep learning exceeding alternative techniques, they have many apparent disadvantages that prevent them from being deployed for the general-purpose. Specifically, deep learning always requires a considerable amount of well-annotated data to circumvent the problems of over-fitting and the lacking of prior knowledge. However, manually labelled data is expensive to acquire and is impossible to incorporate the variations as much as the real world. Consequently, deep learning models usually fail when they confront with the underrepresented variations in the training data. This is the main reason why the deep learning model is barely satisfactory in the challeng­ing image recognition task that contains nuisance variations such as, Remote Sensing Scene Classification (RSSC). The classification of remote sensing scene image is a procedure of assigning the seman­tic meaning labels for the given satellite images that contain the complicated variations, such as texture and appearances. The algorithms for effectively understanding and recognising remote sensing scene images have the potential to be employed in a broad range of applications, such as urban planning, Land Use and Land Cover (LULC) determination, natural hazards detection, vegetation mapping, environmental monitoring. This inspires us to de­sign the frameworks that can automatically predict the precise label for satellite images. In our research project, we mine and define the challenges in RSSC community compared with general scene image recognition tasks. Specifically, we summarise the problems into the following perspectives. 1) Visual-semantic ambiguity: the discrepancy between visual features and semantic concepts; 2) Variations: the intra-class diversity and inter-class similarity; 3) Clutter background; 4) The small size of the training set; 5) Unsatisfactory classification accuracy in large-scale datasets. To address the aforementioned challenges, we explore a way to dynamically expand the capabilities of incorporating the prior knowledge by transforming the input data so that we can learn the globally invariant second-order features from the transformed data for improving the performance of RSSC tasks. First, we devise a recurrent transformer network (RTN) to progressively discover the discriminative regions of input images and learn the corresponding second-order features. The model is optimised using pairwise ranking loss to achieve localising discriminative parts and learning the corresponding features in a mutu­ally reinforced way. Second, we observed that existing remote sensing image datasets lack the provision of ontological structures. Therefore, a multi-granularity canonical appearance pooling (MG-CAP) model is proposed to automatically seek the implied hierarchical structures of datasets and produced covariance features contained the multi-grained information. Third, we explore a way to improve the discriminative power of the second-order features. To accomplish this target, we present a covariance feature embedding (CFE) model to im­prove the distinctive power of covariance pooling by using suitable matrix normalisation methods and a low-norm cosine similarity loss to accurately metric the distances of high­dimensional features. Finally, we improved the performance of RSSC while using fewer model parameters. An invariant deep compressible covariance pooling (IDCCP) model is presented to boost the classification accuracy for RSSC tasks. Meanwhile, we proofed the generalisability of our IDCCP model using group theory and manifold optimisation techniques. All of the proposed frameworks allow being optimised in an end-to-end manner and are well-supported by GPU acceleration. We conduct extensive experiments on the well-known remote sensing scene image datasets to demonstrate the great promotions of our proposed methods in comparison with state-of-the-art approaches
    corecore