4,934 research outputs found

    HoloDetect: Few-Shot Learning for Error Detection

    Full text link
    We introduce a few-shot learning framework for error detection. We show that data augmentation (a form of weak supervision) is key to training high-quality, ML-based error detection models that require minimal human involvement. Our framework consists of two parts: (1) an expressive model to learn rich representations that capture the inherent syntactic and semantic heterogeneity of errors; and (2) a data augmentation model that, given a small seed of clean records, uses dataset-specific transformations to automatically generate additional training data. Our key insight is to learn data augmentation policies from the noisy input dataset in a weakly supervised manner. We show that our framework detects errors with an average precision of ~94% and an average recall of ~93% across a diverse array of datasets that exhibit different types and amounts of errors. We compare our approach to a comprehensive collection of error detection methods, ranging from traditional rule-based methods to ensemble-based and active learning approaches. We show that data augmentation yields an average improvement of 20 F1 points while it requires access to 3x fewer labeled examples compared to other ML approaches.Comment: 18 pages

    A Very Brief Introduction to Machine Learning With Applications to Communication Systems

    Get PDF
    Given the unprecedented availability of data and computing resources, there is widespread renewed interest in applying data-driven machine learning methods to problems for which the development of conventional engineering solutions is challenged by modelling or algorithmic deficiencies. This tutorial-style paper starts by addressing the questions of why and when such techniques can be useful. It then provides a high-level introduction to the basics of supervised and unsupervised learning. For both supervised and unsupervised learning, exemplifying applications to communication networks are discussed by distinguishing tasks carried out at the edge and at the cloud segments of the network at different layers of the protocol stack

    Learning Privacy Preserving Encodings through Adversarial Training

    Full text link
    We present a framework to learn privacy-preserving encodings of images that inhibit inference of chosen private attributes, while allowing recovery of other desirable information. Rather than simply inhibiting a given fixed pre-trained estimator, our goal is that an estimator be unable to learn to accurately predict the private attributes even with knowledge of the encoding function. We use a natural adversarial optimization-based formulation for this---training the encoding function against a classifier for the private attribute, with both modeled as deep neural networks. The key contribution of our work is a stable and convergent optimization approach that is successful at learning an encoder with our desired properties---maintaining utility while inhibiting inference of private attributes, not just within the adversarial optimization, but also by classifiers that are trained after the encoder is fixed. We adopt a rigorous experimental protocol for verification wherein classifiers are trained exhaustively till saturation on the fixed encoders. We evaluate our approach on tasks of real-world complexity---learning high-dimensional encodings that inhibit detection of different scene categories---and find that it yields encoders that are resilient at maintaining privacy.Comment: To appear in WACV 201
    • …
    corecore