100 research outputs found

    Kinship Verification from Videos using Spatio-Temporal Texture Features and Deep Learning

    Full text link
    Automatic kinship verification using facial images is a relatively new and challenging research problem in computer vision. It consists in automatically predicting whether two persons have a biological kin relation by examining their facial attributes. While most of the existing works extract shallow handcrafted features from still face images, we approach this problem from spatio-temporal point of view and explore the use of both shallow texture features and deep features for characterizing faces. Promising results, especially those of deep features, are obtained on the benchmark UvA-NEMO Smile database. Our extensive experiments also show the superiority of using videos over still images, hence pointing out the important role of facial dynamics in kinship verification. Furthermore, the fusion of the two types of features (i.e. shallow spatio-temporal texture features and deep features) shows significant performance improvements compared to state-of-the-art methods.Comment: 7 page

    Fusion features ensembling models using Siamese convolutional neural network for kinship verification

    Get PDF
    Family is one of the most important entities in the community. Mining the genetic information through facial images is increasingly being utilized in wide range of real-world applications to facilitate family members tracing and kinship analysis to become remarkably easy, inexpensive, and fast as compared to the procedure of profiling Deoxyribonucleic acid (DNA). However, the opportunities of building reliable models for kinship recognition are still suffering from the insufficient determination of the familial features, unstable reference cues of kinship, and the genetic influence factors of family features. This research proposes enhanced methods for extracting and selecting the effective familial features that could provide evidences of kinship leading to improve the kinship verification accuracy through visual facial images. First, the Convolutional Neural Network based on Optimized Local Raw Pixels Similarity Representation (OLRPSR) method is developed to improve the accuracy performance by generating a new matrix representation in order to remove irrelevant information. Second, the Siamese Convolutional Neural Network and Fusion of the Best Overlapping Blocks (SCNN-FBOB) is proposed to track and identify the most informative kinship clues features in order to achieve higher accuracy. Third, the Siamese Convolutional Neural Network and Ensembling Models Based on Selecting Best Combination (SCNN-EMSBC) is introduced to overcome the weak performance of the individual image and classifier. To evaluate the performance of the proposed methods, series of experiments are conducted using two popular benchmarking kinship databases; the KinFaceW-I and KinFaceW-II which then are benchmarked against the state-of-art algorithms found in the literature. It is indicated that SCNN-EMSBC method achieves promising results with the average accuracy of 92.42% and 94.80% on KinFaceW-I and KinFaceW-II, respectively. These results significantly improve the kinship verification performance and has outperformed the state-of-art algorithms for visual image-based kinship verification

    Feature Fusion and NRML Metric Learning for Facial Kinship Verification

    Get PDF
    Features extracted from facial images are used in various fields such as kinship verification. The kinship verification system determines the kin or non-kin relation between a pair of facial images by analysing their facial features. In this research, different texture and color features have been used along with the metric learning method, to verify the kinship for the four kinship relations of father-son, father-daughter, mother-son and mother-daughter. First, by fusing effective features, NRML metric learning used to generate the discriminative feature vector, then SVM classifier used to verify to kinship relations. To measure the accuracy of the proposed method, KinFaceW-I and KinFaceW-II databases have been used. The results of the evaluations show that the feature fusion and NRML metric learning methods have been able to improve the performance of the kinship verification system. In addition to the proposed approach, the effect of feature extraction from the image blocks or the whole image is investigated and the results are presented. The results indicate that feature extraction in block form, can be effective in improving the final accuracy of kinship verification

    KFC: Kinship Verification with Fair Contrastive Loss and Multi-Task Learning

    Full text link
    Kinship verification is an emerging task in computer vision with multiple potential applications. However, there's no large enough kinship dataset to train a representative and robust model, which is a limitation for achieving better performance. Moreover, face verification is known to exhibit bias, which has not been dealt with by previous kinship verification works and sometimes even results in serious issues. So we first combine existing kinship datasets and label each identity with the correct race in order to take race information into consideration and provide a larger and complete dataset, called KinRace dataset. Secondly, we propose a multi-task learning model structure with attention module to enhance accuracy, which surpasses state-of-the-art performance. Lastly, our fairness-aware contrastive loss function with adversarial learning greatly mitigates racial bias. We introduce a debias term into traditional contrastive loss and implement gradient reverse in race classification task, which is an innovative idea to mix two fairness methods to alleviate bias. Exhaustive experimental evaluation demonstrates the effectiveness and superior performance of the proposed KFC in both standard deviation and accuracy at the same time.Comment: Accepted by BMVC 202
    corecore