425 research outputs found

    A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients

    Full text link
    In recent years deep artificial neural networks (DNNs) have been successfully employed in numerical simulations for a multitude of computational problems including, for example, object and face recognition, natural language processing, fraud detection, computational advertisement, and numerical approximations of partial differential equations (PDEs). These numerical simulations indicate that DNNs seem to possess the fundamental flexibility to overcome the curse of dimensionality in the sense that the number of real parameters used to describe the DNN grows at most polynomially in both the reciprocal of the prescribed approximation accuracy ε>0 \varepsilon > 0 and the dimension d∈N d \in \mathbb{N} of the function which the DNN aims to approximate in such computational problems. There is also a large number of rigorous mathematical approximation results for artificial neural networks in the scientific literature but there are only a few special situations where results in the literature can rigorously justify the success of DNNs in high-dimensional function approximation. The key contribution of this paper is to reveal that DNNs do overcome the curse of dimensionality in the numerical approximation of Kolmogorov PDEs with constant diffusion and nonlinear drift coefficients. We prove that the number of parameters used to describe the employed DNN grows at most polynomially in both the PDE dimension d∈N d \in \mathbb{N} and the reciprocal of the prescribed approximation accuracy ε>0 \varepsilon > 0 . A crucial ingredient in our proof is the fact that the artificial neural network used to approximate the solution of the PDE is indeed a deep artificial neural network with a large number of hidden layers.Comment: 48 page

    Deep splitting method for parabolic PDEs

    Full text link
    In this paper we introduce a numerical method for nonlinear parabolic PDEs that combines operator splitting with deep learning. It divides the PDE approximation problem into a sequence of separate learning problems. Since the computational graph for each of the subproblems is comparatively small, the approach can handle extremely high-dimensional PDEs. We test the method on different examples from physics, stochastic control and mathematical finance. In all cases, it yields very good results in up to 10,000 dimensions with short run times.Comment: 25 page

    Convergence and qualitative properties of modified explicit schemes for BSDEs with polynomial growth

    Get PDF
    The theory of Forward-Backward Stochastic Differential Equations (FBSDEs) paves a way to probabilistic numerical methods for nonlinear parabolic PDEs. The majority of the results on the numerical methods for FBSDEs relies on the global Lipschitz assumption, which is not satisfied for a number of important cases such as the Fisher--KPP or the FitzHugh--Nagumo equations. Furthermore, it has been shown in \cite{LionnetReisSzpruch2015} that for BSDEs with monotone drivers having polynomial growth in the primary variable yy, only the (sufficiently) implicit schemes converge. But these require an additional computational effort compared to explicit schemes. This article develops a general framework that allows the analysis, in a systematic fashion, of the integrability properties, convergence and qualitative properties (e.g.~comparison theorem) for whole families of modified explicit schemes. The framework yields the convergence of some modified explicit scheme with the same rate as implicit schemes and with the computational cost of the standard explicit scheme. To illustrate our theory, we present several classes of easily implementable modified explicit schemes that can computationally outperform the implicit one and preserve the qualitative properties of the solution to the BSDE. These classes fit into our developed framework and are tested in computational experiments.Comment: 49 pages, 3 figure

    Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise

    Get PDF
    The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The ergodicity of SDEs is established by using techniques from the theory of Markov chains on general state spaces, such as that expounded by Meyn-Tweedie. Application of these Markov chain results leads to straightforward proofs of geometric ergodicity for a variety of SDEs, including problems with degenerate noise and for problems with locally Lipschitz vector fields. Applications where this theory can be usefully applied include damped-driven Hamiltonian problems (the Langevin equation), the Lorenz equation with degenerate noise and gradient systems. The same Markov chain theory is then used to study time-discrete approximations of these SDEs. The two primary ingredients for ergodicity are a minorization condition and a Lyapunov condition. It is shown that the minorization condition is robust under approximation. For globally Lipschitz vector fields this is also true of the Lyapunov condition. However in the locally Lipschitz case the Lyapunov condition fails for explicit methods such as Euler-Maruyama; for pathwise approximations it is, in general, only inherited by specially constructed implicit discretizations. Examples of such discretization based on backward Euler methods are given, and approximation of the Langevin equation studied in some detail
    • …
    corecore