21,269 research outputs found

    Deep Feature Learning of Multi-Network Topology for Node Classification

    Full text link
    Networks are ubiquitous structure that describes complex relationships between different entities in the real world. As a critical component of prediction task over nodes in networks, learning the feature representation of nodes has become one of the most active areas recently. Network Embedding, aiming to learn non-linear and low-dimensional feature representation based on network topology, has been proved to be helpful on tasks of network analysis, especially node classification. For many real-world systems, multiple types of relations are naturally represented by multiple networks. However, existing network embedding methods mainly focus on single network embedding and neglect the information shared among different networks. In this paper, we propose a novel multiple network embedding method based on semisupervised autoencoder, named DeepMNE, which captures complex topological structures of multi-networks and takes the correlation among multi-networks into account. We evaluate DeepMNE on the task of node classification with two real-world datasets. The experimental results demonstrate the superior performance of our method over four state-of-the-art algorithms

    Expanding Label Sets for Graph Convolutional Networks

    Full text link
    In recent years, Graph Convolutional Networks (GCNs) and their variants have been widely utilized in learning tasks that involve graphs. These tasks include recommendation systems, node classification, among many others. In node classification problem, the input is a graph in which the edges represent the association between pairs of nodes, multi-dimensional feature vectors are associated with the nodes, and some of the nodes in the graph have known labels. The objective is to predict the labels of the nodes that are not labeled, using the nodes features, in conjunction with graph topology. While GCNs have been successfully applied to this problem, the caveats that they inherit from traditional deep learning models pose significant challenges to broad utilization of GCNs in node classification. One such caveat is that training a GCN requires a large number of labeled training instances, which is often not the case in realistic settings. To remedy this requirement, state-of-the-art methods leverage network diffusion-based approaches to propagate labels across the network before training GCNs. However, these approaches ignore the tendency of the network diffusion methods in biasing proximity with centrality, resulting in the propagation of labels to the nodes that are well-connected in the graph. To address this problem, here we present an alternate approach to extrapolating node labels in GCNs in the following three steps: (i) clustering of the network to identify communities, (ii) use of network diffusion algorithms to quantify the proximity of each node to the communities, thereby obtaining a low-dimensional topological profile for each node, (iii) comparing these topological profiles to identify nodes that are most similar to the labeled nodes

    Graph Embedding with Rich Information through Heterogeneous Network

    Full text link
    Graph embedding has attracted increasing attention due to its critical application in social network analysis. Most existing algorithms for graph embedding only rely on the typology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this paper, we proposed a novel and general framework of representation learning for graph with rich text information through constructing a bipartite heterogeneous network. Specially, we designed a biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. The efficacy of our method is demonstrated by extensive comparison experiments with several baselines on various datasets. It improves the Micro-F1 and Macro-F1 of node classification by 10% and 7% on Cora dataset.Comment: 9 pages, 7 figures, 4 table

    Multi-Hot Compact Network Embedding

    Full text link
    Network embedding, as a promising way of the network representation learning, is capable of supporting various subsequent network mining and analysis tasks, and has attracted growing research interests recently. Traditional approaches assign each node with an independent continuous vector, which will cause huge memory overhead for large networks. In this paper we propose a novel multi-hot compact embedding strategy to effectively reduce memory cost by learning partially shared embeddings. The insight is that a node embedding vector is composed of several basis vectors, which can significantly reduce the number of continuous vectors while maintain similar data representation ability. Specifically, we propose a MCNE model to learn compact embeddings from pre-learned node features. A novel component named compressor is integrated into MCNE to tackle the challenge that popular back-propagation optimization cannot propagate through discrete samples. We further propose an end-to-end model MCNEt_{t} to learn compact embeddings from the input network directly. Empirically, we evaluate the proposed models over three real network datasets, and the results demonstrate that our proposals can save about 90\% of memory cost of network embeddings without significantly performance decline

    A Review of Modularization Techniques in Artificial Neural Networks

    Full text link
    Artificial neural networks (ANNs) have achieved significant success in tackling classical and modern machine learning problems. As learning problems grow in scale and complexity, and expand into multi-disciplinary territory, a more modular approach for scaling ANNs will be needed. Modular neural networks (MNNs) are neural networks that embody the concepts and principles of modularity. MNNs adopt a large number of different techniques for achieving modularization. Previous surveys of modularization techniques are relatively scarce in their systematic analysis of MNNs, focusing mostly on empirical comparisons and lacking an extensive taxonomical framework. In this review, we aim to establish a solid taxonomy that captures the essential properties and relationships of the different variants of MNNs. Based on an investigation of the different levels at which modularization techniques act, we attempt to provide a universal and systematic framework for theorists studying MNNs, also trying along the way to emphasise the strengths and weaknesses of different modularization approaches in order to highlight good practices for neural network practitioners.Comment: Artif Intell Rev (2019

    Classification of EEG-Based Brain Connectivity Networks in Schizophrenia Using a Multi-Domain Connectome Convolutional Neural Network

    Full text link
    We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure. We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ). To capture complementary aspects of disrupted connectivity in SZ, we explore combination of various connectivity features consisting of time and frequency-domain metrics of effective connectivity based on vector autoregressive model and partial directed coherence, and complex network measures of network topology. We design a novel multi-domain connectome CNN (MDC-CNN) based on a parallel ensemble of 1D and 2D CNNs to integrate the features from various domains and dimensions using different fusion strategies. Hierarchical latent representations learned by the multiple convolutional layers from EEG connectivity reveal apparent group differences between SZ and healthy controls (HC). Results on a large resting-state EEG dataset show that the proposed CNNs significantly outperform traditional support vector machine classifiers. The MDC-CNN with combined connectivity features further improves performance over single-domain CNNs using individual features, achieving remarkable accuracy of 93.06%93.06\% with a decision-level fusion. The proposed MDC-CNN by integrating information from diverse brain connectivity descriptors is able to accurately discriminate SZ from HC. The new framework is potentially useful for developing diagnostic tools for SZ and other disorders.Comment: 15 pages, 9 figure

    Deep Learning At Scale and At Ease

    Full text link
    Recently, deep learning techniques have enjoyed success in various multimedia applications, such as image classification and multi-modal data analysis. Large deep learning models are developed for learning rich representations of complex data. There are two challenges to overcome before deep learning can be widely adopted in multimedia and other applications. One is usability, namely the implementation of different models and training algorithms must be done by non-experts without much effort especially when the model is large and complex. The other is scalability, that is the deep learning system must be able to provision for a huge demand of computing resources for training large models with massive datasets. To address these two challenges, in this paper, we design a distributed deep learning platform called SINGA which has an intuitive programming model based on the common layer abstraction of deep learning models. Good scalability is achieved through flexible distributed training architecture and specific optimization techniques. SINGA runs on GPUs as well as on CPUs, and we show that it outperforms many other state-of-the-art deep learning systems. Our experience with developing and training deep learning models for real-life multimedia applications in SINGA shows that the platform is both usable and scalable.Comment: submitted to TOMM (under review

    Topological based classification of paper domains using graph convolutional networks

    Full text link
    The main approaches for node classification in graphs are information propagation and the association of the class of the node with external information. State of the art methods merge these approaches through Graph Convolutional Networks. We here use the association of topological features of the nodes with their class to predict this class. Moreover, combining topological information with information propagation improves classification accuracy on the standard CiteSeer and Cora paper classification task. Topological features and information propagation produce results almost as good as text-based classification, without no textual or content information. We propose to represent the topology and information propagation through a GCN with the neighboring training node classification as an input and the current node classification as output. Such a formalism outperforms state of the art methods

    Scalable attribute-aware network embedding with locality

    Full text link
    Adding attributes for nodes to network embedding helps to improve the ability of the learned joint representation to depict features from topology and attributes simultaneously. Recent research on the joint embedding has exhibited a promising performance on a variety of tasks by jointly embedding the two spaces. However, due to the indispensable requirement of globality based information, present approaches contain a flaw of in-scalability. Here we propose \emph{SANE}, a scalable attribute-aware network embedding algorithm with locality, to learn the joint representation from topology and attributes. By enforcing the alignment of a local linear relationship between each node and its K-nearest neighbors in topology and attribute space, the joint embedding representations are more informative comparing with a single representation from topology or attributes alone. And we argue that the locality in \emph{SANE} is the key to learning the joint representation at scale. By using several real-world networks from diverse domains, We demonstrate the efficacy of \emph{SANE} in performance and scalability aspect. Overall, for performance on label classification, SANE successfully reaches up to the highest F1-score on most datasets, and even closer to the baseline method that needs label information as extra inputs, compared with other state-of-the-art joint representation algorithms. What's more, \emph{SANE} has an up to 71.4\% performance gain compared with the single topology-based algorithm. For scalability, we have demonstrated the linearly time complexity of \emph{SANE}. In addition, we intuitively observe that when the network size scales to 100,000 nodes, the "learning joint embedding" step of \emph{SANE} only takes ≈10\approx10 seconds

    Multi-Label Image Recognition with Graph Convolutional Networks

    Full text link
    The task of multi-label image recognition is to predict a set of object labels that present in an image. As objects normally co-occur in an image, it is desirable to model the label dependencies to improve the recognition performance. To capture and explore such important dependencies, we propose a multi-label classification model based on Graph Convolutional Network (GCN). The model builds a directed graph over the object labels, where each node (label) is represented by word embeddings of a label, and GCN is learned to map this label graph into a set of inter-dependent object classifiers. These classifiers are applied to the image descriptors extracted by another sub-net, enabling the whole network to be end-to-end trainable. Furthermore, we propose a novel re-weighted scheme to create an effective label correlation matrix to guide information propagation among the nodes in GCN. Experiments on two multi-label image recognition datasets show that our approach obviously outperforms other existing state-of-the-art methods. In addition, visualization analyses reveal that the classifiers learned by our model maintain meaningful semantic topology.Comment: To appear at CVPR 2019 (Source codes have been released on https://github.com/chenzhaomin123/ML_GCN
    • …
    corecore