6,063 research outputs found

    Improving variational autoencoder with deep feature consistent and generative adversarial training

    Get PDF
    We present a new method for improving the performances of variational autoencoder (VAE). In addition to enforcing the deep feature consistent principle thus ensuring the VAE output and its corresponding input images to have similar deep features, we also implement a generative adversarial training mechanism to force the VAE to output realistic and natural images. We present experimental results to show that the VAE trained with our new method outperforms state of the art in generating face images with much clearer and more natural noses, eyes, teeth, hair textures as well as reasonable backgrounds. We also show that our method can learn powerful embeddings of input face images, which can be used to achieve facial attribute manipulation. Moreover we propose a multi-view feature extraction strategy to extract effective image representations, which can be used to achieve state of the art performance in facial attribute prediction

    Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks

    Get PDF
    We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods, which have tackled this problem in a deterministic or non-parametric way, we propose a novel approach that models future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. Future frame synthesis is challenging, as it involves low- and high-level image and motion understanding. We propose a novel network structure, namely a Cross Convolutional Network to aid in synthesizing future frames; this network structure encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, as well as on real-wold videos. We also show that our model can be applied to tasks such as visual analogy-making, and present an analysis of the learned network representations.Comment: The first two authors contributed equally to this wor

    Disentangling Factors of Variation by Mixing Them

    Full text link
    We propose an approach to learn image representations that consist of disentangled factors of variation without exploiting any manual labeling or data domain knowledge. A factor of variation corresponds to an image attribute that can be discerned consistently across a set of images, such as the pose or color of objects. Our disentangled representation consists of a concatenation of feature chunks, each chunk representing a factor of variation. It supports applications such as transferring attributes from one image to another, by simply mixing and unmixing feature chunks, and classification or retrieval based on one or several attributes, by considering a user-specified subset of feature chunks. We learn our representation without any labeling or knowledge of the data domain, using an autoencoder architecture with two novel training objectives: first, we propose an invariance objective to encourage that encoding of each attribute, and decoding of each chunk, are invariant to changes in other attributes and chunks, respectively; second, we include a classification objective, which ensures that each chunk corresponds to a consistently discernible attribute in the represented image, hence avoiding degenerate feature mappings where some chunks are completely ignored. We demonstrate the effectiveness of our approach on the MNIST, Sprites, and CelebA datasets.Comment: CVPR 201
    corecore