22 research outputs found

    Automatic Kinship Verification in Unconstrained Faces using Deep Learning

    Get PDF
    Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. Identifying kinship relations has also garnered interest due to several potential applications in security and surveillance and organizing and tagging the enormous number of videos being uploaded on the Internet. This dissertation has a five-fold contribution where first, a study is conducted to gain insight into the kinship verification process used by humans. Besides this, two separate deep learning based methods are proposed to solve kinship verification in images and videos. Other contributions of this research include interlinking face verification with kinship verification and creation of two kinship databases to facilitate research in this field. WVU Kinship Database is created which consists of multiple images per subject to facilitate kinship verification research. Next, kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250,000 still frames. In this dissertation, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate kinship-cues. The visual stimuli presented to the participants determines their ability to recognize kin relationship using the whole face as well as specific facial regions. The effect of participant gender, age, and kin-relation pair of the stimulus is analyzed using quantitative measures such as accuracy, discriminability index d′, and perceptual information entropy. Next, utilizing the information obtained from the human study, a hierarchical Kinship Verification via Representation Learning (KVRL) framework is utilized to learn the representation of different face regions in an unsupervised manner. We propose a novel approach for feature representation termed as filtered contractive deep belief networks (fcDBN). The proposed feature representation encodes relational information present in images using filters and contractive regularization penalty. A compact representation of facial images of kin is extracted as the output from the learned model and a multi-layer neural network is utilized to verify the kin accurately. The results show that the proposed deep learning framework (KVRL-fcDBN) yields state-of-the-art kinship verification accuracy on the WVU Kinship database and on four existing benchmark datasets. Additionally, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm regularization Autoencoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields videobased kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases. Finally, we end by discussing the connections between face verification and kinship verification research. We explore the area of self-kinship which is age-invariant face recognition. Further, kinship information is used as a soft biometric modality to boost the performance of face verification via product of likelihood ratio and support vector machine based approaches. Using the proposed KVRL-fcDBN framework, an improvement of over 20% is observed in the performance of face verification. By addressing several problems of limited samples per kinship dataset, introducing real-world variations in unconstrained databases and designing two deep learning frameworks, this dissertation improves the understanding of kinship verification across humans and the performance of automated systems. The algorithms proposed in this research have been shown to outperform existing algorithms across six different kinship databases and has till date the best reported results in this field

    14th Conference on DATA ANALYSIS METHODS for Software Systems

    Get PDF
    DAMSS-2023 is the 14th International Conference on Data Analysis Methods for Software Systems, held in Druskininkai, Lithuania. Every year at the same venue and time. The exception was in 2020, when the world was gripped by the Covid-19 pandemic and the movement of people was severely restricted. After a year’s break, the conference was back on track, and the next conference was successful in achieving its primary goal of lively scientific communication. The conference focuses on live interaction among participants. For better efficiency of communication among participants, most of the presentations are poster presentations. This format has proven to be highly effective. However, we have several oral sections, too. The history of the conference dates back to 2009 when 16 papers were presented. It began as a workshop and has evolved into a well-known conference. The idea of such a workshop originated at the Institute of Mathematics and Informatics, now the Institute of Data Science and Digital Technologies of Vilnius University. The Lithuanian Academy of Sciences and the Lithuanian Computer Society supported this idea, which gained enthusiastic acceptance from both the Lithuanian and international scientific communities. This year’s conference features 84 presentations, with 137 registered participants from 11 countries. The conference serves as a gathering point for researchers from six Lithuanian universities, making it the main annual meeting for Lithuanian computer scientists. The primary aim of the conference is to showcase research conducted at Lithuanian and foreign universities in the fields of data science and software engineering. The annual organization of the conference facilitates the rapid exchange of new ideas within the scientific community. Seven IT companies supported the conference this year, indicating the relevance of the conference topics to the business sector. In addition, the conference is supported by the Lithuanian Research Council and the National Science and Technology Council (Taiwan, R. O. C.). The conference covers a wide range of topics, including Applied Mathematics, Artificial Intelligence, Big Data, Bioinformatics, Blockchain Technologies, Business Rules, Software Engineering, Cybersecurity, Data Science, Deep Learning, High-Performance Computing, Data Visualization, Machine Learning, Medical Informatics, Modelling Educational Data, Ontological Engineering, Optimization, Quantum Computing, Signal Processing. This book provides an overview of all presentations from the DAMSS-2023 conference

    Past, Present and Future of a Habitable Earth

    Get PDF
    This perspective of this book views Earth's various layers as a whole system, and tries to understand how to achieve harmony and sustainable development between human society and nature, with the theme of " habitability of the Earth." This book is one effort at providing an overview of some of the recent exciting advances Chinese geoscientists have made. It is the concerted team effort of a group of researchers from diverse backgrounds to generalize their vision for Earth science in the next 10 years. The book is intended for scholars, administrators of the Science and Technology policy department, and science research funding agencies. This is an open access book
    corecore