44,317 research outputs found

    Ensembles of Deep Neural Networks for Action Recognition in Still Images

    Full text link
    Despite the fact that notable improvements have been made recently in the field of feature extraction and classification, human action recognition is still challenging, especially in images, in which, unlike videos, there is no motion. Thus, the methods proposed for recognizing human actions in videos cannot be applied to still images. A big challenge in action recognition in still images is the lack of large enough datasets, which is problematic for training deep Convolutional Neural Networks (CNNs) due to the overfitting issue. In this paper, by taking advantage of pre-trained CNNs, we employ the transfer learning technique to tackle the lack of massive labeled action recognition datasets. Furthermore, since the last layer of the CNN has class-specific information, we apply an attention mechanism on the output feature maps of the CNN to extract more discriminative and powerful features for classification of human actions. Moreover, we use eight different pre-trained CNNs in our framework and investigate their performance on Stanford 40 dataset. Finally, we propose using the Ensemble Learning technique to enhance the overall accuracy of action classification by combining the predictions of multiple models. The best setting of our method is able to achieve 93.17%\% accuracy on the Stanford 40 dataset.Comment: 5 pages, 2 figures, 3 tables, Accepted by ICCKE 201

    Action Recognition in Still Images: Confluence of Multilinear Methods and Deep Learning

    Get PDF
    Motion is a missing information in an image, however, it is a valuable cue for action recognition. Thus, lack of motion information in a single image makes action recognition for still images inherently a very challenging problem in computer vision. In this dissertation, we show that both spatial and temporal patterns provide crucial information for recognizing human actions. Therefore, action recognition depends not only on the spatially-salient pixels, but also on the temporal patterns of those pixels. To address the challenge caused by the absence of temporal information in a single image, we introduce five effective action classification methodologies along with a new still image action recognition dataset. These include (1) proposing a new Spatial-Temporal Convolutional Neural Network, STCNN, trained by fine-tuning a CNN model, pre-trained on appearance-based classification only, over a novel latent space-time domain, named Ranked Saliency Map and Predicted Optical Flow, or RankSM-POF for short, (2) introducing a novel unsupervised Zero-shot approach based on low-rank Tensor Decomposition, named ZTD, (3) proposing the concept of temporal image, a compact representation of hypothetical sequence of images and then using it to design a new hierarchical deep learning network, TICNN, for still image action recognition, (4) introducing a dataset for STill image Action Recognition (STAR), containing over 1M images across 50 different human body-motion action categories. UCF-STAR is the largest dataset in the literature for action recognition in still images, exposing the intrinsic difficulty of action recognition through its realistic scene and action complexity. Moreover, TSSTN, a two-stream spatiotemporal network, is introduced to model the latent temporal information in a single image, and using it as prior knowledge in a two-stream deep network, (5) proposing a parallel heterogeneous meta- learning method to combine STCNN and ZTD through a stacking approach into an ensemble classifier of the proposed heterogeneous base classifiers. Altogether, this work demonstrates benefits of UCF-STAR as a large-scale still images dataset, and show the role of latent motion information in recognizing human actions in still images by presenting approaches relying on predicting temporal information, yielding higher accuracy on widely-used datasets

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Full text link
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    Baseline CNN structure analysis for facial expression recognition

    Full text link
    We present a baseline convolutional neural network (CNN) structure and image preprocessing methodology to improve facial expression recognition algorithm using CNN. To analyze the most efficient network structure, we investigated four network structures that are known to show good performance in facial expression recognition. Moreover, we also investigated the effect of input image preprocessing methods. Five types of data input (raw, histogram equalization, isotropic smoothing, diffusion-based normalization, difference of Gaussian) were tested, and the accuracy was compared. We trained 20 different CNN models (4 networks x 5 data input types) and verified the performance of each network with test images from five different databases. The experiment result showed that a three-layer structure consisting of a simple convolutional and a max pooling layer with histogram equalization image input was the most efficient. We describe the detailed training procedure and analyze the result of the test accuracy based on considerable observation.Comment: 6 pages, RO-MAN2016 Conferenc
    • …
    corecore