44,175 research outputs found

    Deep Clustering and Conventional Networks for Music Separation: Stronger Together

    Full text link
    Deep clustering is the first method to handle general audio separation scenarios with multiple sources of the same type and an arbitrary number of sources, performing impressively in speaker-independent speech separation tasks. However, little is known about its effectiveness in other challenging situations such as music source separation. Contrary to conventional networks that directly estimate the source signals, deep clustering generates an embedding for each time-frequency bin, and separates sources by clustering the bins in the embedding space. We show that deep clustering outperforms conventional networks on a singing voice separation task, in both matched and mismatched conditions, even though conventional networks have the advantage of end-to-end training for best signal approximation, presumably because its more flexible objective engenders better regularization. Since the strengths of deep clustering and conventional network architectures appear complementary, we explore combining them in a single hybrid network trained via an approach akin to multi-task learning. Remarkably, the combination significantly outperforms either of its components.Comment: Published in ICASSP 201

    Reducing Objective Function Mismatch in Deep Clustering with the Unsupervised Companion Objective

    Get PDF
    Preservation of local similarity structure is a key challenge in deep clustering. Many recent deep clustering methods therefore use autoencoders to help guide the model's neural network towards an embedding which is more reflective of the input space geometry. However, recent work has shown that autoencoder-based deep clustering models can suffer from objective function mismatch (OFM). In order to improve the preservation of local similarity structure, while simultaneously having a low OFM, we develop a new auxiliary objective function for deep clustering. Our Unsupervised Companion Objective (UCO) encourages a consistent clustering structure at intermediate layers in the network -- helping the network learn an embedding which is more reflective of the similarity structure in the input space. Since a clustering-based auxiliary objective has the same goal as the main clustering objective, it is less prone to introduce objective function mismatch between itself and the main objective. Our experiments show that attaching the UCO to a deep clustering model improves the performance of the model, and exhibits a lower OFM, compared to an analogous autoencoder-based model

    Joint Optimization of an Autoencoder for Clustering and Embedding

    Get PDF
    Incorporating k-means-like clustering techniques into (deep) autoencoders constitutes an interesting idea as the clustering may exploit the learned similarities in the embedding to compute a non-linear grouping of data at-hand. Unfortunately, the resulting contributions are often limited by ad-hoc choices, decoupled optimization problems and other issues. We present a theoretically-driven deep clustering approach that does not suffer from these limitations and allows for joint optimization of clustering and embedding. The network in its simplest form is derived from a Gaussian mixture model and can be incorporated seamlessly into deep autoencoders for state-of-the-art performance
    • …
    corecore