1,833 research outputs found

    Using Deep Learning and Google Street View to Estimate the Demographic Makeup of the US

    Full text link
    The United States spends more than $1B each year on initiatives such as the American Community Survey (ACS), a labor-intensive door-to-door study that measures statistics relating to race, gender, education, occupation, unemployment, and other demographic factors. Although a comprehensive source of data, the lag between demographic changes and their appearance in the ACS can exceed half a decade. As digital imagery becomes ubiquitous and machine vision techniques improve, automated data analysis may provide a cheaper and faster alternative. Here, we present a method that determines socioeconomic trends from 50 million images of street scenes, gathered in 200 American cities by Google Street View cars. Using deep learning-based computer vision techniques, we determined the make, model, and year of all motor vehicles encountered in particular neighborhoods. Data from this census of motor vehicles, which enumerated 22M automobiles in total (8% of all automobiles in the US), was used to accurately estimate income, race, education, and voting patterns, with single-precinct resolution. (The average US precinct contains approximately 1000 people.) The resulting associations are surprisingly simple and powerful. For instance, if the number of sedans encountered during a 15-minute drive through a city is higher than the number of pickup trucks, the city is likely to vote for a Democrat during the next Presidential election (88% chance); otherwise, it is likely to vote Republican (82%). Our results suggest that automated systems for monitoring demographic trends may effectively complement labor-intensive approaches, with the potential to detect trends with fine spatial resolution, in close to real time.Comment: 41 pages including supplementary material. Under review at PNA

    Remote Sensing Object Detection Meets Deep Learning: A Meta-review of Challenges and Advances

    Full text link
    Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than 300 papers relevant to the RSOD filed were reviewed in this surve

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

    Get PDF
    Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging DOTA dataset, outperforming all published methods by a large margin (+6% and +12% absolute improvement, respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.Comment: ACCV 201

    Fine-Grained Car Detection for Visual Census Estimation

    Full text link
    Targeted socioeconomic policies require an accurate understanding of a country's demographic makeup. To that end, the United States spends more than 1 billion dollars a year gathering census data such as race, gender, education, occupation and unemployment rates. Compared to the traditional method of collecting surveys across many years which is costly and labor intensive, data-driven, machine learning driven approaches are cheaper and faster--with the potential ability to detect trends in close to real time. In this work, we leverage the ubiquity of Google Street View images and develop a computer vision pipeline to predict income, per capita carbon emission, crime rates and other city attributes from a single source of publicly available visual data. We first detect cars in 50 million images across 200 of the largest US cities and train a model to predict demographic attributes using the detected cars. To facilitate our work, we have collected the largest and most challenging fine-grained dataset reported to date consisting of over 2600 classes of cars comprised of images from Google Street View and other web sources, classified by car experts to account for even the most subtle of visual differences. We use this data to construct the largest scale fine-grained detection system reported to date. Our prediction results correlate well with ground truth income data (r=0.82), Massachusetts department of vehicle registration, and sources investigating crime rates, income segregation, per capita carbon emission, and other market research. Finally, we learn interesting relationships between cars and neighborhoods allowing us to perform the first large scale sociological analysis of cities using computer vision techniques.Comment: AAAI 201

    Deep Nuisance Disentanglement for Robust Object Detection from Unmanned Aerial Vehicles

    Get PDF
    Object detection from images captured by Unmanned Aerial Vehicles (UAVs) is becoming dramatically useful. Despite the great success of the generic object detection methods trained on ground-to-ground images, a huge performance drop is observed when these methods are directly applied to images captured by UAVs. The unsatisfactory performance is owing to many UAV-specific nuisances, such as varying flying altitudes, adverse weather conditions, dynamically changing viewing angles, etc., constituting a large number of fine-grained domains across which the detection model has to stay robust. Fortunately, UAVs record meta-data corresponding to the same varying attributes, which can either be freely available along with the UAV images, or easily obtained. We propose to utilize the free meta-data in conjunction with the associated UAV images to learn domain-robust features via an adversarial training framework. This model is dubbed Nuisance Disentangled Feature Transforms (NDFT), for the specific challenging problem of object detection in UAV images. It achieves a substantial gain in robustness to these nuisances. This work demonstrates the effectiveness of our proposed algorithm by showing both quantitative improvements on two existing UAV-based object detection benchmarks, as well as qualitative improvements on self-collected UAV imagery. Reprinted with permission from the Abstract section of Deep Nuisance Disentanglement for Robust Object Detection from Unmanned Aerial Vehicles by Zhenyu Wu† , Karthik Suresh† , Priya Narayanan, Hongyu Xu, Heesung Kwon, Zhangyang Wang, 2019, International Conference on Computer Vision (ICCV 2019) Proceedings (Under Review). † indicates equal contributio
    • …
    corecore