4,031 research outputs found

    Project RISE: Recognizing Industrial Smoke Emissions

    Full text link
    Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for social good.Comment: Technical repor

    Non-aligned supervision for Real Image Dehazing

    Full text link
    Removing haze from real-world images is challenging due to unpredictable weather conditions, resulting in misaligned hazy and clear image pairs. In this paper, we propose a non-aligned supervision framework that consists of three networks - dehazing, airlight, and transmission. In particular, we explore a non-alignment setting by utilizing a clear reference image that is not aligned with the hazy input image to supervise the dehazing network through a multi-scale reference loss that compares the features of the two images. Our setting makes it easier to collect hazy/clear image pairs in real-world environments, even under conditions of misalignment and shift views. To demonstrate this, we have created a new hazy dataset called "Phone-Hazy", which was captured using mobile phones in both rural and urban areas. Additionally, we present a mean and variance self-attention network to model the infinite airlight using dark channel prior as position guidance, and employ a channel attention network to estimate the three-channel transmission. Experimental results show that our framework outperforms current state-of-the-art methods in the real-world image dehazing. Phone-Hazy and code will be available at https://github.com/hello2377/NSDNet

    Simulation-to-Real domain adaptation with teacher-student learning for endoscopic instrument segmentation

    Full text link
    Purpose: Segmentation of surgical instruments in endoscopic videos is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods: We introduce a teacher-student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the erroneous learning problem of the current consistency-based unsupervised domain adaptation framework. Results: Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusion: We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical tools in the annotation scarce setting.Comment: Accepted at IPCAI202

    A comprehensive survey on recent deep learning-based methods applied to surgical data

    Full text link
    Minimally invasive surgery is highly operator dependant with a lengthy procedural time causing fatigue to surgeon and risks to patients such as injury to organs, infection, bleeding, and complications of anesthesia. To mitigate such risks, real-time systems are desired to be developed that can provide intra-operative guidance to surgeons. For example, an automated system for tool localization, tool (or tissue) tracking, and depth estimation can enable a clear understanding of surgical scenes preventing miscalculations during surgical procedures. In this work, we present a systematic review of recent machine learning-based approaches including surgical tool localization, segmentation, tracking, and 3D scene perception. Furthermore, we provide a detailed overview of publicly available benchmark datasets widely used for surgical navigation tasks. While recent deep learning architectures have shown promising results, there are still several open research problems such as a lack of annotated datasets, the presence of artifacts in surgical scenes, and non-textured surfaces that hinder 3D reconstruction of the anatomical structures. Based on our comprehensive review, we present a discussion on current gaps and needed steps to improve the adaptation of technology in surgery.Comment: This paper is to be submitted to International journal of computer visio

    Comparison of two deep learning methods for detecting fire hotspots

    Get PDF
    Every high-rise building must meet construction requirements, i.e. it must have good safety to prevent unexpected events such as fire incident. To avoid the occurrence of a bigger fire, surveillance using closed circuit television (CCTV) videos is necessary. However, it is impossible for security forces to monitor for a full day. One of the methods that can be used to help security forces is deep learning method. In this study, we use two deep learning methods to detect fire hotspots, i.e. you only look once (YOLO) method and faster region-based convolutional neural network (faster R-CNN) method. The first stage, we collected 100 image data (70 training data and 30 test data). The next stage is model training which aims to make the model can recognize fire. Later, we calculate precision, recall, accuracy, and F1 score to measure performance of model. If the F1 score is close to 1, then the balance is optimal. In our experiment results, we found that YOLO has a precision is 100%, recall is 54.54%, accuracy is 66.67%, and F1 score is 0.70583667. While faster R-CNN has a precision is 87.5%, recall is 95.45%, accuracy is 86.67%, and F1 score is 0.913022
    corecore