742 research outputs found

    Orthonormal Product Quantization Network for Scalable Face Image Retrieval

    Full text link
    Recently, deep hashing with Hamming distance metric has drawn increasing attention for face image retrieval tasks. However, its counterpart deep quantization methods, which learn binary code representations with dictionary-related distance metrics, have seldom been explored for the task. This paper makes the first attempt to integrate product quantization into an end-to-end deep learning framework for face image retrieval. Unlike prior deep quantization methods where the codewords for quantization are learned from data, we propose a novel scheme using predefined orthonormal vectors as codewords, which aims to enhance the quantization informativeness and reduce the codewords' redundancy. To make the most of the discriminative information, we design a tailored loss function that maximizes the identity discriminability in each quantization subspace for both the quantized and the original features. Furthermore, an entropy-based regularization term is imposed to reduce the quantization error. We conduct experiments on three commonly-used datasets under the settings of both single-domain and cross-domain retrieval. It shows that the proposed method outperforms all the compared deep hashing/quantization methods under both settings with significant superiority. The proposed codewords scheme consistently improves both regular model performance and model generalization ability, verifying the importance of codewords' distribution for the quantization quality. Besides, our model's better generalization ability than deep hashing models indicates that it is more suitable for scalable face image retrieval tasks

    Unsupervised Triplet Hashing for Fast Image Retrieval

    Full text link
    Hashing has played a pivotal role in large-scale image retrieval. With the development of Convolutional Neural Network (CNN), hashing learning has shown great promise. But existing methods are mostly tuned for classification, which are not optimized for retrieval tasks, especially for instance-level retrieval. In this study, we propose a novel hashing method for large-scale image retrieval. Considering the difficulty in obtaining labeled datasets for image retrieval task in large scale, we propose a novel CNN-based unsupervised hashing method, namely Unsupervised Triplet Hashing (UTH). The unsupervised hashing network is designed under the following three principles: 1) more discriminative representations for image retrieval; 2) minimum quantization loss between the original real-valued feature descriptors and the learned hash codes; 3) maximum information entropy for the learned hash codes. Extensive experiments on CIFAR-10, MNIST and In-shop datasets have shown that UTH outperforms several state-of-the-art unsupervised hashing methods in terms of retrieval accuracy
    • …
    corecore