67,328 research outputs found

    Deep Dimension Reduction for Supervised Representation Learning

    Full text link
    The success of deep supervised learning depends on its automatic data representation abilities. Among all the characteristics of an ideal representation for high-dimensional complex data, information preservation, low dimensionality and disentanglement are the most essential ones. In this work, we propose a deep dimension reduction (DDR) approach to achieving a good data representation with these characteristics for supervised learning. At the population level, we formulate the ideal representation learning task as finding a nonlinear dimension reduction map that minimizes the sum of losses characterizing conditional independence and disentanglement. We estimate the target map at the sample level nonparametrically with deep neural networks. We derive a bound on the excess risk of the deep nonparametric estimator. The proposed method is validated via comprehensive numerical experiments and real data analysis in the context of regression and classification

    SAFS: A Deep Feature Selection Approach for Precision Medicine

    Full text link
    In this paper, we propose a new deep feature selection method based on deep architecture. Our method uses stacked auto-encoders for feature representation in higher-level abstraction. We developed and applied a novel feature learning approach to a specific precision medicine problem, which focuses on assessing and prioritizing risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach is to use deep learning to identify significant risk factors affecting left ventricular mass indexed to body surface area (LVMI) as an indicator of heart damage risk. The results show that our feature learning and representation approach leads to better results in comparison with others

    On orthogonal projections for dimension reduction and applications in augmented target loss functions for learning problems

    Get PDF
    The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does usually not satisfy both objectives at once. In a standard classification problem we determine projections on the input data that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy
    corecore