810 research outputs found

    Computer Vision in the Surgical Operating Room

    Get PDF
    Background: Multiple types of surgical cameras are used in modern surgical practice and provide a rich visual signal that is used by surgeons to visualize the clinical site and make clinical decisions. This signal can also be used by artificial intelligence (AI) methods to provide support in identifying instruments, structures, or activities both in real-time during procedures and postoperatively for analytics and understanding of surgical processes. Summary: In this paper, we provide a succinct perspective on the use of AI and especially computer vision to power solutions for the surgical operating room (OR). The synergy between data availability and technical advances in computational power and AI methodology has led to rapid developments in the field and promising advances. Key Messages: With the increasing availability of surgical video sources and the convergence of technologiesaround video storage, processing, and understanding, we believe clinical solutions and products leveraging vision are going to become an important component of modern surgical capabilities. However, both technical and clinical challenges remain to be overcome to efficiently make use of vision-based approaches into the clinic

    Towards PACE-CAD Systems

    Get PDF
    Despite phenomenal advancements in the availability of medical image datasets and the development of modern classification algorithms, Computer-Aided Diagnosis (CAD) has had limited practical exposure in the real-world clinical workflow. This is primarily because of the inherently demanding and sensitive nature of medical diagnosis that can have far-reaching and serious repercussions in case of misdiagnosis. In this work, a paradigm called PACE (Pragmatic, Accurate, Confident, & Explainable) is presented as a set of some of must-have features for any CAD. Diagnosis of glaucoma using Retinal Fundus Images (RFIs) is taken as the primary use case for development of various methods that may enrich an ordinary CAD system with PACE. However, depending on specific requirements for different methods, other application areas in ophthalmology and dermatology have also been explored. Pragmatic CAD systems refer to a solution that can perform reliably in day-to-day clinical setup. In this research two, of possibly many, aspects of a pragmatic CAD are addressed. Firstly, observing that the existing medical image datasets are small and not representative of images taken in the real-world, a large RFI dataset for glaucoma detection is curated and published. Secondly, realising that a salient attribute of a reliable and pragmatic CAD is its ability to perform in a range of clinically relevant scenarios, classification of 622 unique cutaneous diseases in one of the largest publicly available datasets of skin lesions is successfully performed. Accuracy is one of the most essential metrics of any CAD system's performance. Domain knowledge relevant to three types of diseases, namely glaucoma, Diabetic Retinopathy (DR), and skin lesions, is industriously utilised in an attempt to improve the accuracy. For glaucoma, a two-stage framework for automatic Optic Disc (OD) localisation and glaucoma detection is developed, which marked new state-of-the-art for glaucoma detection and OD localisation. To identify DR, a model is proposed that combines coarse-grained classifiers with fine-grained classifiers and grades the disease in four stages with respect to severity. Lastly, different methods of modelling and incorporating metadata are also examined and their effect on a model's classification performance is studied. Confidence in diagnosing a disease is equally important as the diagnosis itself. One of the biggest reasons hampering the successful deployment of CAD in the real-world is that medical diagnosis cannot be readily decided based on an algorithm's output. Therefore, a hybrid CNN architecture is proposed with the convolutional feature extractor trained using point estimates and a dense classifier trained using Bayesian estimates. Evaluation on 13 publicly available datasets shows the superiority of this method in terms of classification accuracy and also provides an estimate of uncertainty for every prediction. Explainability of AI-driven algorithms has become a legal requirement after Europe’s General Data Protection Regulations came into effect. This research presents a framework for easy-to-understand textual explanations of skin lesion diagnosis. The framework is called ExAID (Explainable AI for Dermatology) and relies upon two fundamental modules. The first module uses any deep skin lesion classifier and performs detailed analysis on its latent space to map human-understandable disease-related concepts to the latent representation learnt by the deep model. The second module proposes Concept Localisation Maps, which extend Concept Activation Vectors by locating significant regions corresponding to a learned concept in the latent space of a trained image classifier. This thesis probes many viable solutions to equip a CAD system with PACE. However, it is noted that some of these methods require specific attributes in datasets and, therefore, not all methods may be applied on a single dataset. Regardless, this work anticipates that consolidating PACE into a CAD system can not only increase the confidence of medical practitioners in such tools but also serve as a stepping stone for the further development of AI-driven technologies in healthcare

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Investigating the Application of Deep Convolutional Neural Networks in Semi-supervised Video Object Segmentation

    Get PDF
    This thesis investigates the different approaches to video object segmentation and the current state-of-the-art in the discipline, focusing on the different deep learning techniques used to solve the problem. The primary contribution of the thesis is the investigation of usefulness of Exponential Linear Units as activation functions for deep convolutional neural architectures trained to perform object semi-supervised segmentation in videos. Mask R-CNN was chosen as the base convolutional neural architecture, with the view of extending the image segmentation algorithm to videos. Two models were created, one with Rectified Linear Units and the other with Exponential Linear Units as the respective activation functions. The models were instantiated and fine-tuned on the first frame of each sequence on the test dataset before predicting segmentations. This was done to focus on the principal object in the video for segmentation. Mean Jaccard index was the metric chosen to evaluate the performance of the models. No significant difference was found between the performance of the two models on the test dataset. A qualitative analysis of the performance of the model with ReLU activation functions was conducted with the view of understanding its strengths and weaknesses. The thesis concludes with an overview and a discussion on limitations and recommendations for future work that can be done to extend on the work presented in this thesis

    Novel Computerised Techniques for Recognition and Analysis of Diabetic Foot Ulcers

    Get PDF
    Diabetic Foot Ulcers (DFU) that affect the lower extremities are a major complication of Diabetes Mellitus (DM). It has been estimated that patients with diabetes have a lifetime risk of 15% to 25% in developing DFU contributing up to 85% of the lower limb amputation due to failure to recognise and treat DFU properly. Current practice for DFU screening involves manual inspection of the foot by podiatrists and further medical tests such as vascular and blood tests are used to determine the presence of ischemia and infection in DFU. A comprehensive review of computerized techniques for recognition of DFU has been performed to identify the work done so far in this field. During this stage, it became clear that computerized analysis of DFU is relatively emerging field that is why related literature and research works are limited. There is also a lack of standardised public database of DFU and other wound-related pathologies. We have received approximately 1500 DFU images through the ethical approval with Lancashire Teaching Hospitals. In this work, we standardised both DFU dataset and expert annotations to perform different computer vision tasks such as classification, segmentation and localization on popular deep learning frameworks. The main focus of this thesis is to develop automatic computer vision methods that can recognise the DFU of different stages and grades. Firstly, we used machine learning algorithms to classify the DFU patches against normal skin patches of the foot region to determine the possible misclassified cases of both classes. Secondly, we used fully convolutional networks for the segmentation of DFU and surrounding skin in full foot images with high specificity and sensitivity. Finally, we used robust and lightweight deep localisation methods in mobile devices to detect the DFU on foot images for remote monitoring. Despite receiving very good performance for the recognition of DFU, these algorithms were not able to detect pre-ulcer conditions and very subtle DFU. Although recognition of DFU by computer vision algorithms is a valuable study, we performed the further analysis of DFU on foot images to determine factors that predict the risk of amputation such as the presence of infection and ischemia in DFU. The complete DFU diagnosis system with these computer vision algorithms have the potential to deliver a paradigm shift in diabetic foot care among diabetic patients, which represent a cost-effective, remote and convenient healthcare solution with more data and expert annotations
    corecore