11,884 research outputs found

    Networks for Nonlinear Diffusion Problems in Imaging

    Get PDF
    A multitude of imaging and vision tasks have seen recently a major transformation by deep learning methods and in particular by the application of convolutional neural networks. These methods achieve impressive results, even for applications where it is not apparent that convolutions are suited to capture the underlying physics. In this work we develop a network architecture based on nonlinear diffusion processes, named DiffNet. By design, we obtain a nonlinear network architecture that is well suited for diffusion related problems in imaging. Furthermore, the performed updates are explicit, by which we obtain better interpretability and generalisability compared to classical convolutional neural network architectures. The performance of DiffNet tested on the inverse problem of nonlinear diffusion with the Perona-Malik filter on the STL-10 image dataset. We obtain competitive results to the established U-Net architecture, with a fraction of parameters and necessary training data

    Deep Convolutional Neural Network for Inverse Problems in Imaging

    Get PDF
    In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise nonlinearity) when the normal operator (H∗ (H ^{ * } H, where H∗ H ^{ * } is the adjoint of the forward imaging operator, H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU

    MetaDIP: Accelerating Deep Image Prior with Meta Learning

    Full text link
    Deep image prior (DIP) is a recently proposed technique for solving imaging inverse problems by fitting the reconstructed images to the output of an untrained convolutional neural network. Unlike pretrained feedforward neural networks, the same DIP can generalize to arbitrary inverse problems, from denoising to phase retrieval, while offering competitive performance at each task. The central disadvantage of DIP is that, while feedforward neural networks can reconstruct an image in a single pass, DIP must gradually update its weights over hundreds to thousands of iterations, at a significant computational cost. In this work we use meta-learning to massively accelerate DIP-based reconstructions. By learning a proper initialization for the DIP weights, we demonstrate a 10x improvement in runtimes across a range of inverse imaging tasks. Moreover, we demonstrate that a network trained to quickly reconstruct faces also generalizes to reconstructing natural image patches

    Applying neural networks for improving the MEG inverse solution

    Get PDF
    Magnetoencephalography (MEG) and electroencephalography (EEG) are appealing non-invasive methods for recording brain activity with high temporal resolution. However, locating the brain source currents from recordings picked up by the sensors on the scalp introduces an ill-posed inverse problem. The MEG inverse problem one of the most difficult inverse problems in medical imaging. The current standard in approximating the MEG inverse problem is to use multiple distributed inverse solutions – namely dSPM, sLORETA and L2 MNE – to estimate the source current distribution in the brain. This thesis investigates if these inverse solutions can be "post-processed" by a neural network to provide improved accuracy on source locations. Recently, deep neural networks have been used to approximate other ill-posed inverse medical imaging problems with accuracy comparable to current state-of- the-art inverse reconstruction algorithms. Neural networks are powerful tools for approximating problems with limited prior knowledge or problems that require high levels of abstraction. In this thesis a special case of a deep convolutional network, the U-Net, is applied to approximate the MEG inverse problem using the standard inverse solutions (dSPM, sLORETA and L2 MNE) as inputs. The U-Net is capable of learning non-linear relationships between the inputs and producing predictions about the site of single-dipole activation with higher accuracy than the L2 minimum-norm based inverse solutions with the following resolution metrics: dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). The U-Net model is stable and performs better in aforesaid resolution metrics than the inverse solutions with multi-dipole data previously unseen by the U-Net
    • …
    corecore