156,566 research outputs found

    A self-training approach for short text clustering

    No full text
    Short text clustering is a challenging problem when adopting traditional bag-of-words or TF-IDF representations, since these lead to sparse vector representations for short texts. Low-dimensional continuous representations or embeddings can counter that sparseness problem: their high representational power is exploited in deep clustering algorithms. While deep clustering has been studied extensively in computer vision, relatively little work has focused on NLP. The method we propose, learns discriminative features from both an autoencoder and a sentence embedding, then uses assignments from a clustering algorithm as supervision to update weights of the encoder network. Experiments on three short text datasets empirically validate the effectiveness of our method

    Deep learning for clustering of continuous gravitational wave candidates

    No full text
    In searching for continuous gravitational waves over very many (≈1017\approx 10^{17}) templates , clustering is a powerful tool which increases the search sensitivity by identifying and bundling together candidates that are due to the same root cause. We implement a deep learning network that identifies clusters of signal candidates in the output of continuous gravitational wave searches and assess its performance

    Deep constrained clustering applied to satellite image time series

    Get PDF
    International audienceThe advent of satellite imagery is generating an unprecedented amount of remote sensing images. Current satellites now achieve frequent revisits and high mission availability and provide series of images of the Earth captured at different dates that can be seen as time series. Analyzing satellite image time series allows to perform continuous wide range Earth observation with applications in agricultural mapping , environmental disaster monitoring, etc. However, the lack of large quantity of labeled data generally prevents from easily applying supervised methods. On the contrary, unsupervised methods do not require expert knowledge but sometimes provide poor results. In this context, constrained clustering, which is a class of semi-supervised learning algorithms , is an alternative and offers a good trade-off of supervision. In this paper, we explore the use of constraints with deep clustering approaches to process satellite image time series. Our experimental study relies on deep embedded clustering and the deep constrained framework using pairwise constraints (must-link and cannot-link). Experiments on a real dataset composed of 11 satellite images show promising results and open many perspectives for applying deep constrained clustering to satellite image time series

    Deep learning for clustering of continuous gravitational wave candidates II: identification of low-SNR candidates

    Get PDF
    Broad searches for continuous gravitational wave signals rely on hierarchies of follow-up stages for candidates above a given significance threshold. An important step to simplify these follow-ups and reduce the computational cost is to bundle together in a single follow-up nearby candidates. This step is called clustering and we investigate carrying it out with a deep learning network. In our first paper [1], we implemented a deep learning clustering network capable of correctly identifying clusters due to large signals. In this paper, a network is implemented that can detect clusters due to much fainter signals. These two networks are complementary and we show that a cascade of the two networks achieves an excellent detection efficiency across a wide range of signal strengths, with a false alarm rate comparable/lower than that of methods currently in use
    • …
    corecore