7 research outputs found

    Interoperability of Contact and Contactless Fingerprints Across Multiple Fingerprint Sensors

    Get PDF
    Contactless fingerprinting devices have grown in popularity in recent years due to speed and convenience of capture. Also, due to the global COID-19 pandemic, the need for safe and hygienic options for fingerprint capture are more pressing than ever. However, contactless systems face challenges in the areas of interoperability and matching performance as shown in other works. In this paper, we present a contactless vs. contact interoperability assessment of several contactless devices, including cellphone fingerphoto capture. During the interoperability assessment, the quality of the fingerprints was considered using the NBIS NFIQ software with the contact-based fingerprint performing the best overall as expected. In addition to evaluating the match performance of each contactless sensor, this paper presents an analysis of the impact of finger size and skin melanin content on contactless match performance. AUC results indicate that contactless match performance of the newest contactless devices is reaching that of contact fingerprints. In addition, match scores indicate that, while not as sensitive to melanin content, contactless fingerprint matching may be impacted by finger size

    Latent Fingerprint Recognition: Fusion of Local and Global Embeddings

    Full text link
    One of the most challenging problems in fingerprint recognition continues to be establishing the identity of a suspect associated with partial and smudgy fingerprints left at a crime scene (i.e., latent prints or fingermarks). Despite the success of fixed-length embeddings for rolled and slap fingerprint recognition, the features learned for latent fingerprint matching have mostly been limited to local minutiae-based embeddings and have not directly leveraged global representations for matching. In this paper, we combine global embeddings with local embeddings for state-of-the-art latent to rolled matching accuracy with high throughput. The combination of both local and global representations leads to improved recognition accuracy across NIST SD 27, NIST SD 302, MSP, MOLF DB1/DB4, and MOLF DB2/DB4 latent fingerprint datasets for both closed-set (84.11%, 54.36%, 84.35%, 70.43%, 62.86% rank-1 retrieval rate, respectively) and open-set (0.50, 0.74, 0.44, 0.60, 0.68 FNIR at FPIR=0.02, respectively) identification scenarios on a gallery of 100K rolled fingerprints. Not only do we fuse the complimentary representations, we also use the local features to guide the global representations to focus on discriminatory regions in two fingerprint images to be compared. This leads to a multi-stage matching paradigm in which subsets of the retrieved candidate lists for each probe image are passed to subsequent stages for further processing, resulting in a considerable reduction in latency (requiring just 0.068 ms per latent to rolled comparison on a AMD EPYC 7543 32-Core Processor, roughly 15K comparisons per second). Finally, we show the generalizability of the fused representations for improving authentication accuracy across several rolled, plain, and contactless fingerprint datasets

    An overview of touchless 2D fingerprint recognition

    Get PDF
    Touchless fingerprint recognition represents a rapidly growing field of research which has been studied for more than a decade. Through a touchless acquisition process, many issues of touch-based systems are circumvented, e.g., the presence of latent fingerprints or distortions caused by pressing fingers on a sensor surface. However, touchless fingerprint recognition systems reveal new challenges. In particular, a reliable detection and focusing of a presented finger as well as an appropriate preprocessing of the acquired finger image represent the most crucial tasks. Also, further issues, e.g., interoperability between touchless and touch-based fingerprints or presentation attack detection, are currently investigated by different research groups. Many works have been proposed so far to put touchless fingerprint recognition into practice. Published approaches range from self identification scenarios with commodity devices, e.g., smartphones, to high performance on-the-move deployments paving the way for new fingerprint recognition application scenarios.This work summarizes the state-of-the-art in the field of touchless 2D fingerprint recognition at each stage of the recognition process. Additionally, technical considerations and trade-offs of the presented methods are discussed along with open issues and challenges. An overview of available research resources completes the work

    An Analysis on Adversarial Machine Learning: Methods and Applications

    Get PDF
    Deep learning has witnessed astonishing advancement in the last decade and revolutionized many fields ranging from computer vision to natural language processing. A prominent field of research that enabled such achievements is adversarial learning, investigating the behavior and functionality of a learning model in presence of an adversary. Adversarial learning consists of two major trends. The first trend analyzes the susceptibility of machine learning models to manipulation in the decision-making process and aims to improve the robustness to such manipulations. The second trend exploits adversarial games between components of the model to enhance the learning process. This dissertation aims to provide an analysis on these two sides of adversarial learning and harness their potential for improving the robustness and generalization of deep models. In the first part of the dissertation, we study the adversarial susceptibility of deep learning models. We provide an empirical analysis on the extent of vulnerability by proposing two adversarial attacks that explore the geometric and frequency-domain characteristics of inputs to manipulate deep decisions. Afterward, we formalize the susceptibility of deep networks using the first-order approximation of the predictions and extend the theory to the ensemble classification scheme. Inspired by theoretical findings, we formalize a reliable and practical defense against adversarial examples to robustify ensembles. We extend this part by investigating the shortcomings of \gls{at} and highlight that the popular momentum stochastic gradient descent, developed essentially for natural training, is not proper for optimization in adversarial training since it is not designed to be robust against the chaotic behavior of gradients in this setup. Motivated by these observations, we develop an optimization method that is more suitable for adversarial training. In the second part of the dissertation, we harness adversarial learning to enhance the generalization and performance of deep networks in discriminative and generative tasks. We develop several models for biometric identification including fingerprint distortion rectification and latent fingerprint reconstruction. In particular, we develop a ridge reconstruction model based on generative adversarial networks that estimates the missing ridge information in latent fingerprints. We introduce a novel modification that enables the generator network to preserve the ID information during the reconstruction process. To address the scarcity of data, {\it e.g.}, in latent fingerprint analysis, we develop a supervised augmentation technique that combines input examples based on their salient regions. Our findings advocate that adversarial learning improves the performance and reliability of deep networks in a wide range of applications

    On Three-Dimensional Reconstruction

    Get PDF

    Improving Sensor Interoperability between Contactless and Contact-Based Fingerprints Using Pose Correction and Unwarping

    No full text
    Current fingerprint identification systems face significant challenges in achieving interoperability between contact-based and contactless fingerprint sensors. In contrast to existing literature, we propose a novel approach that can combine pose correction with further enhancement operations. It uses deep learning models to steer the correction of the viewing angle, therefore enhancing the matching features of contactless fingerprints. The proposed approach was tested on real data of 78 participants (37,162 contactless fingerprints) acquired by national police officers using both contact-based and contactless sensors. The study found that the effectiveness of pose correction and unwarping varied significantly based on the individual characteristics of each fingerprint. However, when the various extension methods were combined on a finger-wise basis, an average decrease of 36.9% in equal error rates (EERs) was observed. Additionally, the combined impact of pose correction and bidirectional unwarping led to an average increase of 3.72% in NFIQ 2 scores across all fingers, coupled with a 6.4% decrease in EERs relative to the baseline. The addition of deep learning techniques presents a promising approach for achieving high-quality fingerprint acquisition using contactless sensors, enhancing recognition accuracy in various domains
    corecore