684,592 research outputs found

    Deep Complex Networks

    Full text link
    At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art performance on these audio-related tasks

    Deep learning systems as complex networks

    Full text link
    Thanks to the availability of large scale digital datasets and massive amounts of computational power, deep learning algorithms can learn representations of data by exploiting multiple levels of abstraction. These machine learning methods have greatly improved the state-of-the-art in many challenging cognitive tasks, such as visual object recognition, speech processing, natural language understanding and automatic translation. In particular, one class of deep learning models, known as deep belief networks, can discover intricate statistical structure in large data sets in a completely unsupervised fashion, by learning a generative model of the data using Hebbian-like learning mechanisms. Although these self-organizing systems can be conveniently formalized within the framework of statistical mechanics, their internal functioning remains opaque, because their emergent dynamics cannot be solved analytically. In this article we propose to study deep belief networks using techniques commonly employed in the study of complex networks, in order to gain some insights into the structural and functional properties of the computational graph resulting from the learning process.Comment: 20 pages, 9 figure

    Geometric robustness of deep networks: analysis and improvement

    Full text link
    Deep convolutional neural networks have been shown to be vulnerable to arbitrary geometric transformations. However, there is no systematic method to measure the invariance properties of deep networks to such transformations. We propose ManiFool as a simple yet scalable algorithm to measure the invariance of deep networks. In particular, our algorithm measures the robustness of deep networks to geometric transformations in a worst-case regime as they can be problematic for sensitive applications. Our extensive experimental results show that ManiFool can be used to measure the invariance of fairly complex networks on high dimensional datasets and these values can be used for analyzing the reasons for it. Furthermore, we build on Manifool to propose a new adversarial training scheme and we show its effectiveness on improving the invariance properties of deep neural networks

    Deep Quaternion Networks

    Full text link
    The field of deep learning has seen significant advancement in recent years. However, much of the existing work has been focused on real-valued numbers. Recent work has shown that a deep learning system using the complex numbers can be deeper for a fixed parameter budget compared to its real-valued counterpart. In this work, we explore the benefits of generalizing one step further into the hyper-complex numbers, quaternions specifically, and provide the architecture components needed to build deep quaternion networks. We develop the theoretical basis by reviewing quaternion convolutions, developing a novel quaternion weight initialization scheme, and developing novel algorithms for quaternion batch-normalization. These pieces are tested in a classification model by end-to-end training on the CIFAR-10 and CIFAR-100 data sets and a segmentation model by end-to-end training on the KITTI Road Segmentation data set. These quaternion networks show improved convergence compared to real-valued and complex-valued networks, especially on the segmentation task, while having fewer parametersComment: IJCNN 2018, 8 pages, 1 figur
    corecore