134 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Airborne Object Detection Using Hyperspectral Imaging: Deep Learning Review

    Full text link
    © 2019, Springer Nature Switzerland AG. Hyperspectral images have been increasingly important in object detection applications especially in remote sensing scenarios. Machine learning algorithms have become emerging tools for hyperspectral image analysis. The high dimensionality of hyperspectral images and the availability of simulated spectral sample libraries make deep learning an appealing approach. This report reviews recent data processing and object detection methods in the area including hand-crafted and automated feature extraction based on deep learning neural networks. The accuracy performances were compared according to existing reports as well as our own experiments (i.e., re-implementing and testing on new datasets). CNN models provided reliable performance of over 97% detection accuracy across a large set of HSI collections. A wide range of data were used: a rural area (Indian Pines data), an urban area (Pavia University), a wetland region (Botswana), an industrial field (Kennedy Space Center), to a farm site (Salinas). Note that, the Botswana set was not reviewed in recent works, thus high accuracy selected methods were newly compared in this work. A plain CNN model was also found to be able to perform comparably to its more complex variants in target detection applications

    Learnable Reconstruction Methods from RGB Images to Hyperspectral Imaging: A Survey

    Full text link
    Hyperspectral imaging enables versatile applications due to its competence in capturing abundant spatial and spectral information, which are crucial for identifying substances. However, the devices for acquiring hyperspectral images are expensive and complicated. Therefore, many alternative spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from lower-cost, more available RGB images. We present a thorough investigation of these state-of-the-art spectral reconstruction methods from the widespread RGB images. A systematic study and comparison of more than 25 methods has revealed that most of the data-driven deep learning methods are superior to prior-based methods in terms of reconstruction accuracy and quality despite lower speeds. This comprehensive review can serve as a fruitful reference source for peer researchers, thus further inspiring future development directions in related domains

    X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for Classification of Remote Sensing Data

    Get PDF
    This paper addresses the problem of semi-supervised transfer learning with limited cross-modality data in remote sensing. A large amount of multi-modal earth observation images, such as multispectral imagery (MSI) or synthetic aperture radar (SAR) data, are openly available on a global scale, enabling parsing global urban scenes through remote sensing imagery. However, their ability in identifying materials (pixel-wise classification) remains limited, due to the noisy collection environment and poor discriminative information as well as limited number of well-annotated training images. To this end, we propose a novel cross-modal deep-learning framework, called X-ModalNet, with three well-designed modules: self-adversarial module, interactive learning module, and label propagation module, by learning to transfer more discriminative information from a small-scale hyperspectral image (HSI) into the classification task using a large-scale MSI or SAR data. Significantly, X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network, yielding semi-supervised cross-modality learning. We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods

    Spectral-spatial self-attention networks for hyperspectral image classification.

    Get PDF
    This study presents a spectral-spatial self-attention network (SSSAN) for classification of hyperspectral images (HSIs), which can adaptively integrate local features with long-range dependencies related to the pixel to be classified. Specifically, it has two subnetworks. The spatial subnetwork introduces the proposed spatial self-attention module to exploit rich patch-based contextual information related to the center pixel. The spectral subnetwork introduces the proposed spectral self-attention module to exploit the long-range spectral correlation over local spectral features. The extracted spectral and spatial features are then adaptively fused for HSI classification. Experiments conducted on four HSI datasets demonstrate that the proposed network outperforms several state-of-the-art methods

    Radiometrically-Accurate Hyperspectral Data Sharpening

    Get PDF
    Improving the spatial resolution of hyperpsectral image (HSI) has traditionally been an important topic in the field of remote sensing. Many approaches have been proposed based on various theories including component substitution, multiresolution analysis, spectral unmixing, Bayesian probability, and tensor representation. However, these methods have some common disadvantages, such as that they are not robust to different up-scale ratios and they have little concern for the per-pixel radiometric accuracy of the sharpened image. Moreover, many learning-based methods have been proposed through decades of innovations, but most of them require a large set of training pairs, which is unpractical for many real problems. To solve these problems, we firstly proposed an unsupervised Laplacian Pyramid Fusion Network (LPFNet) to generate a radiometrically-accurate high-resolution HSI. First, with the low-resolution hyperspectral image (LR-HSI) and the high-resolution multispectral image (HR-MSI), the preliminary high-resolution hyperspectral image (HR-HSI) is calculated via linear regression. Next, the high-frequency details of the preliminary HR-HSI are estimated via the subtraction between it and the CNN-generated-blurry version. By injecting the details to the output of the generative CNN with the low-resolution hyperspectral image (LR-HSI) as input, the final HR-HSI is obtained. LPFNet is designed for fusing the LR-HSI and HR-MSI covers the same Visible-Near-Infrared (VNIR) bands, while the short-wave infrared (SWIR) bands of HSI are ignored. SWIR bands are equally important to VNIR bands, but their spatial details are more challenging to be enhanced because the HR-MSI, used to provide the spatial details in the fusion process, usually has no SWIR coverage or lower-spatial-resolution SWIR. To this end, we designed an unsupervised cascade fusion network (UCFNet) to sharpen the Vis-NIR-SWIR LR-HSI. First, the preliminary high-resolution VNIR hyperspectral image (HR-VNIR-HSI) is obtained with a conventional hyperspectral algorithm. Then, the HR-MSI, the preliminary HR-VNIR-HSI, and the LR-SWIR-HSI are passed to the generative convolutional neural network to produce an HR-HSI. In the training process, the cascade sharpening method is employed to improve stability. Furthermore, the self-supervising loss is introduced based on the cascade strategy to further improve the spectral accuracy. Experiments are conducted on both LPFNet and UCFNet with different datasets and up-scale ratios. Also, state-of-the-art baseline methods are implemented and compared with the proposed methods with different quantitative metrics. Results demonstrate that proposed methods outperform the competitors in all cases in terms of spectral and spatial accuracy

    Fusion of PCA and segmented-PCA domain multiscale 2-D-SSA for effective spectral-spatial feature extraction and data classification in hyperspectral imagery.

    Get PDF
    As hyperspectral imagery (HSI) contains rich spectral and spatial information, a novel principal component analysis (PCA) and segmented-PCA (SPCA)-based multiscale 2-D-singular spectrum analysis (2-D-SSA) fusion method is proposed for joint spectral–spatial HSI feature extraction and classification. Considering the overall spectra and adjacent band correlations of objects, the PCA and SPCA methods are utilized first for spectral dimension reduction, respectively. Then, multiscale 2-D-SSA is applied onto the SPCA dimension-reduced images to extract abundant spatial features at different scales, where PCA is applied again for dimensionality reduction. The obtained multiscale spatial features are then fused with the global spectral features derived from PCA to form multiscale spectral–spatial features (MSF-PCs). The performance of the extracted MSF-PCs is evaluated using the support vector machine (SVM) classifier. Experiments on four benchmark HSI data sets have shown that the proposed method outperforms other state-of-the-art feature extraction methods, including several deep learning approaches, when only a small number of training samples are available
    • …
    corecore