6,777 research outputs found

    ContextDesc: Local Descriptor Augmentation with Cross-Modality Context

    Full text link
    Most existing studies on learning local features focus on the patch-based descriptions of individual keypoints, whereas neglecting the spatial relations established from their keypoint locations. In this paper, we go beyond the local detail representation by introducing context awareness to augment off-the-shelf local feature descriptors. Specifically, we propose a unified learning framework that leverages and aggregates the cross-modality contextual information, including (i) visual context from high-level image representation, and (ii) geometric context from 2D keypoint distribution. Moreover, we propose an effective N-pair loss that eschews the empirical hyper-parameter search and improves the convergence. The proposed augmentation scheme is lightweight compared with the raw local feature description, meanwhile improves remarkably on several large-scale benchmarks with diversified scenes, which demonstrates both strong practicality and generalization ability in geometric matching applications.Comment: Accepted to CVPR 2019 (oral), supplementary materials included. (https://github.com/lzx551402/contextdesc

    Matchable Image Retrieval by Learning from Surface Reconstruction

    Full text link
    Convolutional Neural Networks (CNNs) have achieved superior performance on object image retrieval, while Bag-of-Words (BoW) models with handcrafted local features still dominate the retrieval of overlapping images in 3D reconstruction. In this paper, we narrow down this gap by presenting an efficient CNN-based method to retrieve images with overlaps, which we refer to as the matchable image retrieval problem. Different from previous methods that generates training data based on sparse reconstruction, we create a large-scale image database with rich 3D geometrics and exploit information from surface reconstruction to obtain fine-grained training data. We propose a batched triplet-based loss function combined with mesh re-projection to effectively learn the CNN representation. The proposed method significantly accelerates the image retrieval process in 3D reconstruction and outperforms the state-of-the-art CNN-based and BoW methods for matchable image retrieval. The code and data are available at https://github.com/hlzz/mirror.Comment: accepted by ACCV 201

    DeepPoint3D: Learning Discriminative Local Descriptors using Deep Metric Learning on 3D Point Clouds

    Full text link
    Learning local descriptors is an important problem in computer vision. While there are many techniques for learning local patch descriptors for 2D images, recently efforts have been made for learning local descriptors for 3D points. The recent progress towards solving this problem in 3D leverages the strong feature representation capability of image based convolutional neural networks by utilizing RGB-D or multi-view representations. However, in this paper, we propose to learn 3D local descriptors by directly processing unstructured 3D point clouds without needing any intermediate representation. The method constitutes a deep network for learning permutation invariant representation of 3D points. To learn the local descriptors, we use a multi-margin contrastive loss which discriminates between similar and dissimilar points on a surface while also leveraging the extent of dissimilarity among the negative samples at the time of training. With comprehensive evaluation against strong baselines, we show that the proposed method outperforms state-of-the-art methods for matching points in 3D point clouds. Further, we demonstrate the effectiveness of the proposed method on various applications achieving state-of-the-art results

    Learning to Fuse Local Geometric Features for 3D Rigid Data Matching

    Full text link
    This paper presents a simple yet very effective data-driven approach to fuse both low-level and high-level local geometric features for 3D rigid data matching. It is a common practice to generate distinctive geometric descriptors by fusing low-level features from various viewpoints or subspaces, or enhance geometric feature matching by leveraging multiple high-level features. In prior works, they are typically performed via linear operations such as concatenation and min pooling. We show that more compact and distinctive representations can be achieved by optimizing a neural network (NN) model under the triplet framework that non-linearly fuses local geometric features in Euclidean spaces. The NN model is trained by an improved triplet loss function that fully leverages all pairwise relationships within the triplet. Moreover, the fused descriptor by our approach is also competitive to deep learned descriptors from raw data while being more lightweight and rotational invariant. Experimental results on four standard datasets with various data modalities and application contexts confirm the advantages of our approach in terms of both feature matching and geometric registration

    Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN

    Full text link
    Recent advances in deep convolutional neural networks (CNNs) have motivated researchers to adapt CNNs to directly model points in 3D point clouds. Modeling local structure has been proven to be important for the success of convolutional architectures, and researchers exploited the modeling of local point sets in the feature extraction hierarchy. However, limited attention has been paid to explicitly model the geometric structure amongst points in a local region. To address this problem, we propose Geo-CNN, which applies a generic convolution-like operation dubbed as GeoConv to each point and its local neighborhood. Local geometric relationships among points are captured when extracting edge features between the center and its neighboring points. We first decompose the edge feature extraction process onto three orthogonal bases, and then aggregate the extracted features based on the angles between the edge vector and the bases. This encourages the network to preserve the geometric structure in Euclidean space throughout the feature extraction hierarchy. GeoConv is a generic and efficient operation that can be easily integrated into 3D point cloud analysis pipelines for multiple applications. We evaluate Geo-CNN on ModelNet40 and KITTI and achieve state-of-the-art performance

    Explicit Spatial Encoding for Deep Local Descriptors

    Full text link
    We propose a kernelized deep local-patch descriptor based on efficient match kernels of neural network activations. Response of each receptive field is encoded together with its spatial location using explicit feature maps. Two location parametrizations, Cartesian and polar, are used to provide robustness to a different types of canonical patch misalignment. Additionally, we analyze how the conventional architecture, i.e. a fully connected layer attached after the convolutional part, encodes responses in a spatially variant way. In contrary, explicit spatial encoding is used in our descriptor, whose potential applications are not limited to local-patches. We evaluate the descriptor on standard benchmarks. Both versions, encoding 32x32 or 64x64 patches, consistently outperform all other methods on all benchmarks. The number of parameters of the model is independent of the input patch resolution

    Deep Hough Voting for 3D Object Detection in Point Clouds

    Full text link
    Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -- samples from 2D manifolds in 3D space -- we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.Comment: ICCV 201

    Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    Full text link
    Point cloud analysis is very challenging, as the shape implied in irregular points is difficult to capture. In this paper, we propose RS-CNN, namely, Relation-Shape Convolutional Neural Network, which extends regular grid CNN to irregular configuration for point cloud analysis. The key to RS-CNN is learning from relation, i.e., the geometric topology constraint among points. Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others. In this way, an inductive local representation with explicit reasoning about the spatial layout of points can be obtained, which leads to much shape awareness and robustness. With this convolution as a basic operator, RS-CNN, a hierarchical architecture can be developed to achieve contextual shape-aware learning for point cloud analysis. Extensive experiments on challenging benchmarks across three tasks verify RS-CNN achieves the state of the arts.Comment: Accepted to CVPR 2019 as an oral presentation. Project page at https://yochengliu.github.io/Relation-Shape-CN

    PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval

    Full text link
    Point cloud based retrieval for place recognition is an emerging problem in vision field. The main challenge is how to find an efficient way to encode the local features into a discriminative global descriptor. In this paper, we propose a Point Contextual Attention Network (PCAN), which can predict the significance of each local point feature based on point context. Our network makes it possible to pay more attention to the task-relevent features when aggregating local features. Experiments on various benchmark datasets show that the proposed network can provide outperformance than current state-of-the-art approaches.Comment: Accepted to CVPR 201

    MeshCNN: A Network with an Edge

    Full text link
    Polygonal meshes provide an efficient representation for 3D shapes. They explicitly capture both shape surface and topology, and leverage non-uniformity to represent large flat regions as well as sharp, intricate features. This non-uniformity and irregularity, however, inhibits mesh analysis efforts using neural networks that combine convolution and pooling operations. In this paper, we utilize the unique properties of the mesh for a direct analysis of 3D shapes using MeshCNN, a convolutional neural network designed specifically for triangular meshes. Analogous to classic CNNs, MeshCNN combines specialized convolution and pooling layers that operate on the mesh edges, by leveraging their intrinsic geodesic connections. Convolutions are applied on edges and the four edges of their incident triangles, and pooling is applied via an edge collapse operation that retains surface topology, thereby, generating new mesh connectivity for the subsequent convolutions. MeshCNN learns which edges to collapse, thus forming a task-driven process where the network exposes and expands the important features while discarding the redundant ones. We demonstrate the effectiveness of our task-driven pooling on various learning tasks applied to 3D meshes.Comment: For a two-minute explanation video see https://bit.ly/meshcnnvide
    • …
    corecore