6,904 research outputs found

    Deep Adversarial Inconsistent Cognitive Sampling for Multi-view Progressive Subspace Clustering

    Full text link
    Deep multi-view clustering methods have achieved remarkable performance. However, all of them failed to consider the difficulty labels (uncertainty of ground-truth for training samples) over multi-view samples, which may result into a nonideal clustering network for getting stuck into poor local optima during training process; worse still, the difficulty labels from multi-view samples are always inconsistent, such fact makes it even more challenging to handle. In this paper, we propose a novel Deep Adversarial Inconsistent Cognitive Sampling (DAICS) method for multi-view progressive subspace clustering. A multiview binary classification (easy or difficult) loss and a feature similarity loss are proposed to jointly learn a binary classifier and a deep consistent feature embedding network, throughout an adversarial minimax game over difficulty labels of multiview consistent samples. We develop a multi-view cognitive sampling strategy to select the input samples from easy to difficult for multi-view clustering network training. However, the distributions of easy and difficult samples are mixed together, hence not trivial to achieve the goal. To resolve it, we define a sampling probability with theoretical guarantee. Based on that, a golden section mechanism is further designed to generate a sample set boundary to progressively select the samples with varied difficulty labels via a gate unit, which is utilized to jointly learn a multi-view common progressive subspace and clustering network for more efficient clustering. Experimental results on four real-world datasets demonstrate the superiority of DAICS over the state-of-the-art methods

    TSViz: Demystification of Deep Learning Models for Time-Series Analysis

    Full text link
    This paper presents a novel framework for demystification of convolutional deep learning models for time-series analysis. This is a step towards making informed/explainable decisions in the domain of time-series, powered by deep learning. There have been numerous efforts to increase the interpretability of image-centric deep neural network models, where the learned features are more intuitive to visualize. Visualization in time-series domain is much more complicated as there is no direct interpretation of the filters and inputs as compared to the image modality. In addition, little or no concentration has been devoted for the development of such tools in the domain of time-series in the past. TSViz provides possibilities to explore and analyze a network from different dimensions at different levels of abstraction which includes identification of parts of the input that were responsible for a prediction (including per filter saliency), importance of different filters present in the network for a particular prediction, notion of diversity present in the network through filter clustering, understanding of the main sources of variation learnt by the network through inverse optimization, and analysis of the network's robustness against adversarial noise. As a sanity check for the computed influence values, we demonstrate results regarding pruning of neural networks based on the computed influence information. These representations allow to understand the network features so that the acceptability of deep networks for time-series data can be enhanced. This is extremely important in domains like finance, industry 4.0, self-driving cars, health-care, counter-terrorism etc., where reasons for reaching a particular prediction are equally important as the prediction itself. We assess the proposed framework for interpretability with a set of desirable properties essential for any method.Comment: 7 Pages (6 + 1 for references), 7 figure

    Learning Graph Embedding with Adversarial Training Methods

    Full text link
    Graph embedding aims to transfer a graph into vectors to facilitate subsequent graph analytics tasks like link prediction and graph clustering. Most approaches on graph embedding focus on preserving the graph structure or minimizing the reconstruction errors for graph data. They have mostly overlooked the embedding distribution of the latent codes, which unfortunately may lead to inferior representation in many cases. In this paper, we present a novel adversarially regularized framework for graph embedding. By employing the graph convolutional network as an encoder, our framework embeds the topological information and node content into a vector representation, from which a graph decoder is further built to reconstruct the input graph. The adversarial training principle is applied to enforce our latent codes to match a prior Gaussian or Uniform distribution. Based on this framework, we derive two variants of adversarial models, the adversarially regularized graph autoencoder (ARGA) and its variational version, adversarially regularized variational graph autoencoder (ARVGA), to learn the graph embedding effectively. We also exploit other potential variations of ARGA and ARVGA to get a deeper understanding on our designs. Experimental results compared among twelve algorithms for link prediction and twenty algorithms for graph clustering validate our solutions.Comment: To appear in IEEE Transactions on Cybernetics. arXiv admin note: substantial text overlap with arXiv:1802.0440

    Sparse Label Smoothing Regularization for Person Re-Identification

    Full text link
    Person re-identification (re-id) is a cross-camera retrieval task which establishes a correspondence between images of a person from multiple cameras. Deep Learning methods have been successfully applied to this problem and have achieved impressive results. However, these methods require a large amount of labeled training data. Currently labeled datasets in person re-id are limited in their scale and manual acquisition of such large-scale datasets from surveillance cameras is a tedious and labor-intensive task. In this paper, we propose a framework that performs intelligent data augmentation and assigns partial smoothing label to generated data. Our approach first exploits the clustering property of existing person re-id datasets to create groups of similar objects that model cross-view variations. Each group is then used to generate realistic images through adversarial training. Our aim is to emphasize feature similarity between generated samples and the original samples. Finally, we assign a non-uniform label distribution to the generated samples and define a regularized loss function for training. The proposed approach tackles two problems (1) how to efficiently use the generated data and (2) how to address the over-smoothness problem found in current regularization methods. Extensive experiments on four larges cale datasets show that our regularization method significantly improves the Re-ID accuracy compared to existing methods.Comment: 13 pages, 6 figure

    Crossing Generative Adversarial Networks for Cross-View Person Re-identification

    Full text link
    Person re-identification (\textit{re-id}) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by relying on labeled paired images in correspondence. However, annotating pair-wise images is prohibitively expensive in labors, and thus not practical in large-scale networked cameras. Moreover, seeking comparable representations across camera views demands a flexible model to address the complex distributions of images. In this work, we study the co-occurrence statistic patterns between pairs of images, and propose to crossing Generative Adversarial Network (Cross-GAN) for learning a joint distribution for cross-image representations in a unsupervised manner. Given a pair of person images, the proposed model consists of the variational auto-encoder to encode the pair into respective latent variables, a proposed cross-view alignment to reduce the view disparity, and an adversarial layer to seek the joint distribution of latent representations. The learned latent representations are well-aligned to reflect the co-occurrence patterns of paired images. We empirically evaluate the proposed model against challenging datasets, and our results show the importance of joint invariant features in improving matching rates of person re-id with comparison to semi/unsupervised state-of-the-arts.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1702.03431 by other author

    Deep Spectral Clustering using Dual Autoencoder Network

    Full text link
    The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we propose a joint learning framework for discriminative embedding and spectral clustering. We first devise a dual autoencoder network, which enforces the reconstruction constraint for the latent representations and their noisy versions, to embed the inputs into a latent space for clustering. As such the learned latent representations can be more robust to noise. Then the mutual information estimation is utilized to provide more discriminative information from the inputs. Furthermore, a deep spectral clustering method is applied to embed the latent representations into the eigenspace and subsequently clusters them, which can fully exploit the relationship between inputs to achieve optimal clustering results. Experimental results on benchmark datasets show that our method can significantly outperform state-of-the-art clustering approaches

    Deep Learning in Information Security

    Full text link
    Machine learning has a long tradition of helping to solve complex information security problems that are difficult to solve manually. Machine learning techniques learn models from data representations to solve a task. These data representations are hand-crafted by domain experts. Deep Learning is a sub-field of machine learning, which uses models that are composed of multiple layers. Consequently, representations that are used to solve a task are learned from the data instead of being manually designed. In this survey, we study the use of DL techniques within the domain of information security. We systematically reviewed 77 papers and presented them from a data-centric perspective. This data-centric perspective reflects one of the most crucial advantages of DL techniques -- domain independence. If DL-methods succeed to solve problems on a data type in one domain, they most likely will also succeed on similar data from another domain. Other advantages of DL methods are unrivaled scalability and efficiency, both regarding the number of examples that can be analyzed as well as with respect of dimensionality of the input data. DL methods generally are capable of achieving high-performance and generalize well. However, information security is a domain with unique requirements and challenges. Based on an analysis of our reviewed papers, we point out shortcomings of DL-methods to those requirements and discuss further research opportunities

    Geodesic Clustering in Deep Generative Models

    Full text link
    Deep generative models are tremendously successful in learning low-dimensional latent representations that well-describe the data. These representations, however, tend to much distort relationships between points, i.e. pairwise distances tend to not reflect semantic similarities well. This renders unsupervised tasks, such as clustering, difficult when working with the latent representations. We demonstrate that taking the geometry of the generative model into account is sufficient to make simple clustering algorithms work well over latent representations. Leaning on the recent finding that deep generative models constitute stochastically immersed Riemannian manifolds, we propose an efficient algorithm for computing geodesics (shortest paths) and computing distances in the latent space, while taking its distortion into account. We further propose a new architecture for modeling uncertainty in variational autoencoders, which is essential for understanding the geometry of deep generative models. Experiments show that the geodesic distance is very likely to reflect the internal structure of the data

    Logo Synthesis and Manipulation with Clustered Generative Adversarial Networks

    Full text link
    Designing a logo for a new brand is a lengthy and tedious back-and-forth process between a designer and a client. In this paper we explore to what extent machine learning can solve the creative task of the designer. For this, we build a dataset -- LLD -- of 600k+ logos crawled from the world wide web. Training Generative Adversarial Networks (GANs) for logo synthesis on such multi-modal data is not straightforward and results in mode collapse for some state-of-the-art methods. We propose the use of synthetic labels obtained through clustering to disentangle and stabilize GAN training. We are able to generate a high diversity of plausible logos and we demonstrate latent space exploration techniques to ease the logo design task in an interactive manner. Moreover, we validate the proposed clustered GAN training on CIFAR 10, achieving state-of-the-art Inception scores when using synthetic labels obtained via clustering the features of an ImageNet classifier. GANs can cope with multi-modal data by means of synthetic labels achieved through clustering, and our results show the creative potential of such techniques for logo synthesis and manipulation. Our dataset and models will be made publicly available at https://data.vision.ee.ethz.ch/cvl/lld/

    Learning to Align Multi-Camera Domains using Part-Aware Clustering for Unsupervised Video Person Re-Identification

    Full text link
    Most video person re-identification (re-ID) methods are mainly based on supervised learning, which requires cross-camera ID labeling. Since the cost of labeling increases dramatically as the number of cameras increases, it is difficult to apply the re-identification algorithm to a large camera network. In this paper, we address the scalability issue by presenting deep representation learning without ID information across multiple cameras. Technically, we train neural networks to generate both ID-discriminative and camera-invariant features. To achieve the ID discrimination ability of the embedding features, we maximize feature distances between different person IDs within a camera by using a metric learning approach. At the same time, considering each camera as a different domain, we apply adversarial learning across multiple camera domains for generating camera-invariant features. We also propose a part-aware adaptation module, which effectively performs multi-camera domain invariant feature learning in different spatial regions. We carry out comprehensive experiments on three public re-ID datasets (i.e., PRID-2011, iLIDS-VID, and MARS). Our method outperforms state-of-the-art methods by a large margin of about 20\% in terms of rank-1 accuracy on the large-scale MARS dataset
    • …
    corecore