38 research outputs found

    HCT: Hybrid Convnet-Transformer for Parkinson's disease detection and severity prediction from gait

    Full text link
    In this paper, we propose a novel deep learning method based on a new Hybrid ConvNet-Transformer architecture to detect and stage Parkinson's disease (PD) from gait data. We adopt a two-step approach by dividing the problem into two sub-problems. Our Hybrid ConvNet-Transformer model first distinguishes healthy versus parkinsonian patients. If the patient is parkinsonian, a multi-class Hybrid ConvNet-Transformer model determines the Hoehn and Yahr (H&Y) score to assess the PD severity stage. Our hybrid architecture exploits the strengths of both Convolutional Neural Networks (ConvNets) and Transformers to accurately detect PD and determine the severity stage. In particular, we take advantage of ConvNets to capture local patterns and correlations in the data, while we exploit Transformers for handling long-term dependencies in the input signal. We show that our hybrid method achieves superior performance when compared to other state-of-the-art methods, with a PD detection accuracy of 97% and a severity staging accuracy of 87%. Our source code is available at: https://github.com/SafwenNaimiComment: 6 pages, 6 figures, 3 tables, Accepted for publication in IEEE International Conference on Machine Learning and Applications (ICMLA), copyright IEE

    Transformers for 1D Signals in Parkinson's Disease Detection from Gait

    Full text link
    This paper focuses on the detection of Parkinson's disease based on the analysis of a patient's gait. The growing popularity and success of Transformer networks in natural language processing and image recognition motivated us to develop a novel method for this problem based on an automatic features extraction via Transformers. The use of Transformers in 1D signal is not really widespread yet, but we show in this paper that they are effective in extracting relevant features from 1D signals. As Transformers require a lot of memory, we decoupled temporal and spatial information to make the model smaller. Our architecture used temporal Transformers, dimension reduction layers to reduce the dimension of the data, a spatial Transformer, two fully connected layers and an output layer for the final prediction. Our model outperforms the current state-of-the-art algorithm with 95.2\% accuracy in distinguishing a Parkinsonian patient from a healthy one on the Physionet dataset. A key learning from this work is that Transformers allow for greater stability in results. The source code and pre-trained models are released in https://github.com/DucMinhDimitriNguyen/Transformers-for-1D-signals-in-Parkinson-s-disease-detection-from-gait.gitComment: International Conference on Pattern Recognition (ICPR 2022

    1D-Convolutional transformer for Parkinson disease diagnosis from gait

    Get PDF

    HCT: Hybrid Convnet-Transformer for Parkinson’s disease detection and severity prediction from gait

    Get PDF

    Transformers for 1D signals in Parkinson’s disease detection from gait

    Get PDF

    Determining the severity of Parkinson’s disease in patients using a multi task neural network

    Get PDF
    [EN] Parkinson’s disease is easy to diagnose when it is advanced, but it is very difficult to diagnose in its early stages. Early diagnosis is essential to be able to treat the symptoms. It impacts on daily activities and reduces the quality of life of both the patients and their families and it is also the second most prevalent neurodegenerative disorder after Alzheimer in people over the age of 60. Most current studies on the prediction of Parkinson’s severity are carried out in advanced stages of the disease. In this work, the study analyzes a set of variables that can be easily extracted from voice analysis, making it a very non-intrusive technique. In this paper, a method based on different deep learning techniques is proposed with two purposes. On the one hand, to find out if a person has severe or non-severe Parkinson’s disease, and on the other hand, to determine by means of regression techniques the degree of evolution of the disease in a given patient. The UPDRS (Unified Parkinson’s Disease Rating Scale) has been used by taking into account both the motor and total labels, and the best results have been obtained using a mixed multi-layer perceptron (MLP) that classifies and regresses at the same time and the most important features of the data obtained are taken as input, using an autoencoder. A success rate of 99.15% has been achieved in the problem of predicting whether a person suffers from severe Parkinson’s disease or non-severe Parkinson’s disease. In the degree of disease involvement prediction problem case, a MSE (Mean Squared Error) of 0.15 has been obtained. Using a full deep learning pipeline for data preprocessing and classification has proven to be very promising in the field Parkinson’s outperforming the state-of-the-art proposals.SIPublicaciΓ³n en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y LeΓ³n (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEΓ“N, ActuaciΓ³n:20007-CL - Apoyo Consorcio BUCL

    It diagnostics of parkinson's disease based on voice markers and decreased motor activity

    Get PDF
    The objectives of the article to propose the method for complex recognition of Parkinson's disease using machine learning, based on markers of voice analysis and changes in patient movements on known data sets. The time-frequency function, (the wavelet function) and the Meyer kepstral coefficient function are used. The KNN algorithm and the algorithm of a two-layer neural network were used for training and testing on publicly available datasets on speech changes and motion retardation in Parkinson's disease. A Bayesian optimizer was also used to improve the hyperparameters of the KNN algorithm. The constructed models achieved an accuracy of 94.7 % and 96.2 % on a data set on speech changes in patients with Parkinson's disease and a data set on slowing down the movement of patients, respectively. The recognition results are close to the world level. The proposed technique is intended for use in the subsystem of IT diagnostics of nervous diseases

    Modified SqueezeNet Architecture for Parkinson's Disease Detection Based on Keypress Data

    Get PDF
    Parkinson’s disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject’s key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches

    РаспознаваниС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° Π½Π° основС Π°Π½Π°Π»ΠΈΠ·Π° голосовых ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΈ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ активности

    Get PDF
    Objectives. The problem of IT diagnostics of signs of Parkinson's disease is solved by analyzing changes in the voice and slowing down the movement of patients. The urgency of the task is associated with the need for early diagnosis of the disease. A method of complex recognition of Parkinson's disease using machine learning is proposed, based on markers of voice analysis and changes in the patient's movements on known data sets.Methods. The time-frequency function (the wavelet function) and the Meyer kepstral coefficient function, the KNN algorithm (k-Nearest Neighbors, KNN) and the algorithm of a two-layer neural network are used for training and testing on publicly available datasets on speech changes and motion retardation in Parkinson's disease. A Bayesian optimizer is also used to improve the hyperparameters of the KNN algorithm.Results. The KNN algorithm was used for speech recognition of patients, the test accuracy of 94.7% was achieved in the diagnosis of Parkinson's disease by voice change. The Bayesian neural network algorithm was applied to recognize the slowing down of the patients' movements, it gave a test accuracy of 96.2% for the diagnosis of Parkinson's disease.Conclusion. The obtained results of recognition of signs of Parkinson's disease are close to the world level. On the same set of data on speech changes of patients, one of the best indicators of foreign studies is 95.8%. On the same set of data on motion deceleration, one of the best indicators of foreign researchers is 98.8%. The proposed author's technique is intended for use in the subsystem of IT diagnostics of neurological diseases of a Smart city.Π¦Π΅Π»ΠΈ. Π Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° ИВ-диагностики ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° ΠΏΠΎ Π°Π½Π°Π»ΠΈΠ·Ρƒ измСнСния голоса ΠΈ замСдлСния двиТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ связана с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π½Π½Π΅ΠΉ диагностики заболСвания. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ комплСксного распознавания Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° с использованиСм машинного обучСния, основанный Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ голосовых ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² двиТСниях ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π° извСстных Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ….ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ частотно-врСмСнная функция (функция Π²Π΅ΠΉΠ²Π»Π΅Ρ‚Π°), функция ΠΊΠ΅ΠΏΡΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ коэффициСнта ΠœΠ΅ΠΉΠ΅Ρ€Π°, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй (k-Nearest Neighbors, KNN), Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ двухслойной Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти для обучСния ΠΈ тСстирования Π½Π° общСдоступных Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ измСнСнию Ρ€Π΅Ρ‡ΠΈ ΠΈ замСдлСнию двиТСния ΠΏΡ€ΠΈ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ байСсовский ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€ для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Π³ΠΈΠΏΠ΅Ρ€ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° KNN.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Алгоритм KNN использован для распознавания Ρ€Π΅Ρ‡ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ тСста 94,7 % достигнута ΠΏΡ€ΠΈ диагностикС Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° ΠΏΠΎ измСнСнию голоса. Алгоритм байСсовской Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ для распознавания замСдлСния двиТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΎΠ½ Π΄Π°Π» Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ тСста 96,2 %.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ распознавания ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΌΡƒ ΡƒΡ€ΠΎΠ²Π½ΡŽ. На Ρ‚ΠΎΠΌ ΠΆΠ΅ Π½Π°Π±ΠΎΡ€Π΅ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ измСнСнию Ρ€Π΅Ρ‡ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… исслСдований составляСт 95,8 %, Π° Π½Π° Π½Π°Π±ΠΎΡ€Π΅ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ замСдлСнию двиТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² - 98,8 %. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ авторская ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° для использования Π² подсистСмС ИВ-диагностики нСврологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π³ΠΎΡ€ΠΎΠ΄Π°

    Recognition of signs of Parkinson's disease based on the analysis of voice markers and motor activity

    Get PDF
    Π Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π·Π°Π΄Π°Ρ‡Π° ИВ-диагностики ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° ΠΏΠΎ Π°Π½Π°Π»ΠΈΠ·Ρƒ измСнСния голоса ΠΈ замСдлСния двиТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ связана с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π½Π½Π΅ΠΉ диагностики заболСвания. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ комплСксного распознавания Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° с использованиСм машинного обучСния, основанный Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ голосовых ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² двиТСниях ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π° извСстных Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ частотно-врСмСнная функция (функция Π²Π΅ΠΉΠ²Π»Π΅Ρ‚Π°), функция ΠΊΠ΅ΠΏΡΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ коэффициСнта ΠœΠ΅ΠΉΠ΅Ρ€Π°, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… сосСдСй (k-Nearest Neighbors, KNN), Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ двухслойной Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти для обучСния ΠΈ тСстирования Π½Π° общСдоступных Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ измСнСнию Ρ€Π΅Ρ‡ΠΈ ΠΈ замСдлСнию двиТСния ΠΏΡ€ΠΈ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ байСсовский ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€ для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Π³ΠΈ- ΠΏΠ΅Ρ€ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° KNN. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Алгоритм KNN использован для распознавания Ρ€Π΅Ρ‡ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ тСста 94,7 % достигнута ΠΏΡ€ΠΈ диагностикС Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° ΠΏΠΎ измСнСнию голоса. Алгоритм байСсовской Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ для распознавания замСдлСния двиТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΎΠ½ Π΄Π°Π» Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ тСста 96,2 %. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ распознавания ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π° Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΌΡƒ ΡƒΡ€ΠΎΠ²Π½ΡŽ. На Ρ‚ΠΎΠΌ ΠΆΠ΅ Π½Π°Π±ΠΎΡ€Π΅ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ измСнСнию Ρ€Π΅Ρ‡ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π»ΡƒΡ‡ΡˆΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… исслСдований составляСт 95,8 %, Π° Π½Π° Π½Π°Π±ΠΎΡ€Π΅ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ замСдлСнию двиТСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² – 98,8 %. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠ°Ρ авторская ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π° для использования Π² подсистСмС ИВ-диагностики нСврологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΡƒΠΌΠ½ΠΎΠ³ΠΎ Π³ΠΎΡ€ΠΎΠ΄Π°
    corecore