10,857 research outputs found
Linear Accelerator Test Facility at LNF Conceptual Design Report
Test beam and irradiation facilities are the key enabling infrastructures for
research in high energy physics (HEP) and astro-particles. In the last 11 years
the Beam-Test Facility (BTF) of the DA{\Phi}NE accelerator complex in the
Frascati laboratory has gained an important role in the European
infrastructures devoted to the development and testing of particle detectors.
At the same time the BTF operation has been largely shadowed, in terms of
resources, by the running of the DA{\Phi}NE electron-positron collider. The
present proposal is aimed at improving the present performance of the facility
from two different points of view: extending the range of application for the
LINAC beam extracted to the BTF lines, in particular in the (in some sense
opposite) directions of hosting fundamental physics and providing electron
irradiation also for industrial users; extending the life of the LINAC beyond
or independently from its use as injector of the DA{\Phi}NE collider, as it is
also a key element of the electron/positron beam facility. The main lines of
these two developments can be identified as: consolidation of the LINAC
infrastructure, in order to guarantee a stable operation in the longer term;
upgrade of the LINAC energy, in order to increase the facility capability
(especially for the almost unique extracted positron beam); doubling of the BTF
beam-lines, in order to cope with the signicant increase of users due to the
much wider range of applications.Comment: 71 page
Low-power, 10-Gbps 1.5-Vpp differential CMOS driver for a silicon electro-optic ring modulator
We present a novel driver circuit enabling electro-optic modulation with high extinction ratio from a co-designed silicon ring modulator. The driver circuit provides an asymmetric differential output at 10Gbps with a voltage swing up to 1.5V(pp) from a single 1.0V supply, maximizing the resonance-wavelength shift of depletion-type ring modulators while avoiding carrier injection. A test chip containing 4 reconfigurable driver circuits was fabricated in 40nm CMOS technology. The measured energy consumption for driving a 100fF capacitive load at 10Gbps was as low as 125fJ/bit and 220fJ/bit at 1V(pp) and 1.5V(pp) respectively. After flip-chip integration with ring modulators on a silicon-photonics chip, the power consumption was measured to be 210fJ/bit and 350fJ/bit respectively
First experimental demonstration of temporal hypertelescope operation with a laboratory prototype
In this paper, we report the first experimental demonstration of a Temporal
HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested
in a manual cophasing configuration on a 1D object. The Point Spread Function
(PSF) is measured and exhibits a dynamics in the range of 300. A quantitative
analysis of the potential biases demonstrates that this limitation is related
to the residual phase fluctuation on each interferometric arm. Secondly, an
unbalanced binary star is imaged demonstrating the imaging capability of THT.
In addition, 2D PSF is recorded even if the telescope array is not optimized
for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure
Teaching photonic integrated circuits with Jupyter notebooks : design, simulation, fabrication
At Ghent University, we have built a course curriculum on integrated photonics, and in particular silicon photonics, based on interactive Jupyter Notebooks. This has been used in short workshops, specialization courses at PhD level, as well as the M.Sc. Photonics Engineering program at Ghent University and the Free University of Brussels. The course material teaches the concepts of on-chip waveguides, basic building blocks, circuits, the design process, fabrication and measurements. The Jupyter notebook environment provides an interface where static didactic content (text, figures, movies, formulas) is mixed with Python code that the user can modify and execute, and interactive plots and widgets to explore the effect of changes in circuits or components. The Python environment supplies a host of scientific and engineering libraries, while the photonic capabilities are based on IPKISS, a commercial design framework for photonic integrated circuits by Luceda Photonics. The IPKISS framework allows scripting of layout and simulation directly from the Jupyter notebooks, so the teaching modules contain live circuit simulation, as well as integration with electromagnetic solvers. Because this is a complete design framework, students can also use it to tape out a small chip design which is fabricated through a rapid prototyping service and then measured, allowing the students to validate the actual performance of their design against the original simulation. The scripting in Jupyter notebooks also provides a self-documenting design flow, and the use of an established design tool guarantees that the acquired skills can be transferred to larger, real-world design projects
MEMS-enabled silicon photonic integrated devices and circuits
Photonic integrated circuits have seen a dramatic increase in complexity over the past decades. This development has been spurred by recent applications in datacenter communications and enabled by the availability of standardized mature technology platforms. Mechanical movement of wave-guiding structures at the micro- and nanoscale provides unique opportunities to further enhance functionality and to reduce power consumption in photonic integrated circuits. We here demonstrate integration of MEMS-enabled components in a simplified silicon photonics process based on IMEC's Standard iSiPP50G Silicon Photonics Platform and a custom release process
Development of large radii half-wave plates for CMB satellite missions
The successful European Space Agency (ESA) Planck mission has mapped the
Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented
accuracy. However, Planck was not designed to detect the polarised components
of the CMB with comparable precision. The BICEP2 collaboration has recently
reported the first detection of the B-mode polarisation. ESA is funding the
development of critical enabling technologies associated with B-mode
polarisation detection, one of these being large diameter half-wave plates. We
compare different polarisation modulators and discuss their respective
trade-offs in terms of manufacturing, RF performance and thermo-mechanical
properties. We then select the most appropriate solution for future satellite
missions, optimized for the detection of B-modes.Comment: 16 page
Testing high resolution SD ADC’s by using the noise transfer function
A new solution to improve the testability of high resolution SD Analogue to Digital Converters (SD ADC’s) using the quantizer input as test node is described. The theoretical basis for the technique is discussed and results from high level simulations for a 16 bit, 4th order, audio ADC are presented. The analysis demonstrates the potential to reduce the computational effort associated with test response analysis versus conventional techniques
- …
