993 research outputs found

    Low Cost Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Many of the services envisaged for high speed networks, such as B-ISDN/ATM, will support real-time applications with large numbers of users. Examples of these types of application range from those used by closed groups, such as private video meetings or conferences, where all participants must be known to the sender, to applications used by open groups, such as video lectures, where partcipants need not be known by the sender. These types of application will require high volumes of network resources in addition to the real-time delay constraints on data delivery. For these reasons, several multicast routing heuristics have been proposed to support both interactive and distribution multimedia services, in high speed networks. The objective of such heuristics is to minimise the multicast tree cost while maintaining a real-time bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient, although some perform better for small multicast groups and others perform better for larger groups. Firstly, we present a detailed analysis and evaluation of some of these heuristics which illustrates that in some situations their average performance is reversed; a heuristic that in general produces efficient solutions for small multicasts may sometimes produce a more efficient solution for a particular large multicast, in a specific network. Also, in a limited number of cases using Dijkstra's algorithm produces the best result. We conclude that the efficiency of a heuristic solution depends on the topology of both the network and the multicast, and that it is difficult to predict. Because of this unpredictability we propose the integration of two heuristics with Dijkstra's shortest path tree algorithm to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. These heuristics are based on Dijkstra's algorithm which maintains acceptable time complexity for the hybrid, and they rarely produce inefficient solutions for the same network/multicast. The resulting performance attained is generally good and in the rare worst cases is that of the shortest path tree. The performance of our hybrid is supported by our evaluation results. Secondly, we examine the stability of multicast trees where multicast group membership is dynamic. We conclude that, in general, the more efficient the solution of a heuristic is, the less stable the multicast tree will be as multicast group membership changes. For this reason, while the hybrid solution we propose might be suitable for use with closed user group multicasts, which are likely to be stable, we need a different approach for open user group multicasting, where group membership may be highly volatile. We propose an extension to an existing heuristic that ensures multicast tree stability where multicast group membership is dynamic. Although this extension decreases the efficiency of the heuristics solutions, its performance is significantly better than that of the worst case, a shortest path tree. Finally, we consider how we might apply the hybrid and the extended heuristic in current and future multicast routing protocols for the Internet and for ATM Networks.

    IP and ATM - a position paper

    Get PDF
    This paper gives a technical overview of different networking technologies, such as the Internet, ATM. It describes different approaches of how to run IP on top of an ATM network, and assesses their potential to be used as an integrated services network

    Asynchronously Replicated Shared Workspaces for a Multi-Media Annotation Service over Internet

    Get PDF
    This paper describes a world wide collaboration system through multimedia Post-its (user generated annotations). DIANE is a service to create multimedia annotations to every application output on the computer, as well as to existing multimedia annotations. Users collaborate by registering multimedia documents and user generated annotation in shared workspaces. However, DIANE only allows effective participation in a shared workspace over a high performance network (ATM, fast Ethernet) since it deals with large multimedia object. When only slow or unreliable connections are available between a DIANE terminal and server, useful work becomes impossible. To overcome these restrictions we need to replicate DIANE servers so that users do not suffer degradation in the quality of service. We use the asynchronous replication service ODIN to replicate the shared workspaces to every interested site in a transparent way to users. ODIN provides a cost-effective object replication by building a dynamic virtual network over Internet. The topology of this virtual network optimizes the use of network resources while it satisfies the changing requirements of the users

    IP and ATM - current evolution for integrated services

    Get PDF
    Current and future applications make use of different technologies as voice, data, and video. Consequently network technologies need to support them. For many years, the ATM based Broadband-ISDN has generally been regarded as the ultimate networking technology, which can integrate voice, data, and video services. With the recent tremendous growth of the Internet and the reluctant deployment of public ATM networks, the future development of ATM seems to be less clear than it used to be. In the past IP provided (and was though to provide) only best effort services, thus, despite its world wide diffution, was not considered as a network solution for multimedia application. Currently many of the IETF working groups work on areas related to integrated services, and IP is also proposing itself as networking technology for supporting voice, data, and video services. This paper give a technical overview on the competing integrated services network solutions, such as IP, ATM and the different available and emerging technologies on how to run IP over ATM, and tries to identify their potential and shortcomings

    Networking and electronic highway

    Get PDF

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    Peer-to-Peer vs. the Internet: A Discussion on the Proper and Practical Location of Functionality

    Get PDF
    Peer-to-peer information sharing has become one of the dominant Internet applications, measured not only in the number of users, but also in the network bandwidth consumed. Thus, it is reasonable to examine the location of support functionality such as self-organisation, resource discovery, multipoint-to-multipoint group communication, forwarding, and routing, to provide the needed service to applications while optimising resource usage in the network. This position paper is intended to stimulate discussion in two related areas: First, where {em should} functionality to support peer-to-peer applications be located: in the network, or as an application overlay among end systems. Second, where {em can} functionality be located, given the practical constraints of the modern Internet including closed systems and middleboxes, as well as administrative, legal, and social issues. We will discuss the performance implications of these decisions, including whether low latency bounds for delay sensitive peer-to-peer applications (such as distributed network computing) can ever be achieved in this environment

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    PIM-SM = Protocol Independent Multicast- Sparse Mode

    Get PDF
    This paper proposes a design for IP multicast routing in hybrid satellite networks. The emergence of IP multicast for Internet group communication has placed focus on communication satellites as an efficient way to extend the multicast services for groups with distributed membership in wide-area networks. This poses interesting challenges for routing. Hybrid satellite networks can have both wired and wireless links and also combine different link-layer technologies like Ethernet and ATM. No proposed IP multicast routing protocol for wired networks offers an integrated solution for such networks. This paper attempts to provide a solution by proposing a design for IP multicast routing in wide-area networks that have terrestrial Ethernet LANs interconnected by A TM-based satellite channels. The paper reviews the multicast services offered by IP and A TM, and proposes a multicast routing framework that combines PIM-SM protocol for terrestrial multicasting with the A TM MARS and VC mesh architecture for multicast routing over the satellite links. Modifications are made to the standard protocols to suit the unique needs of the network being considered. The feasibility of the proposed design is tested by performing simulations. The proposed framework is presented in detail, along with analysis and simulation results

    Overlay networks for smart grids

    Get PDF
    • …
    corecore