19 research outputs found

    Feasibility of transabdominal electrohysterography for analysis of uterine activity in nonpregnant women

    Get PDF
    Purpose: Uterine activity plays a key role in reproduction, and altered patterns of uterine contractility have been associated with important physiopathological conditions, such as subfertility, dysmenorrhea, and endometriosis. However, there is currently no method to objectively quantify uterine contractility outside pregnancy without interfering with the spontaneous contraction pattern. Transabdominal electrohysterography has great potential as a clinical tool to characterize noninvasively uterine activity, but results of this technique in nonpregnant women are poorly documented. The purpose of this study is to investigate the feasibility of transabdominal electrohysterography in nonpregnant women. Methods: Longitudinal measurements were performed on 22 healthy women in 4 representative phases of the menstrual cycle. Twelve electrohysterogram-based indicators previously validated in pregnancy have been estimated and compared in the 4 phases of the cycle. Using the Tukey honest significance test, significant differences were defined for P values below .05. Results: Half of the selected electrohysterogram-based indicators showed significant differences between menses and at least 1 of the other 3 phases, that is the luteal phase. Conclusion: Our results suggest transabdominal electrohysterography to be feasible for analysis of uterine activity in nonpregnant women. Due to the lack of a golden standard, this feasibility study is indirectly validated based on physiological observations. However, these promising results motivate further research aiming at evaluating electrohysterography as a method to improve understanding and management of dysfunctions (possibly) related to altered uterine contractility, such as infertility, endometriosis, and dysmenorrhea

    Electrohysterography in the diagnosis of preterm birth: a review

    Full text link
    This is an author-created, un-copyedited versĂ­on of an article published in Physiological Measurement. IOP Publishing Ltd is not responsĂ­ble for any errors or omissĂ­ons in this versĂ­on of the manuscript or any versĂ­on derived from it. The VersĂ­on of Record is available online at http://doi.org/10.1088/1361-6579/aaad56.[EN] Preterm birth (PTB) is one of the most common and serious complications in pregnancy. About 15 million preterm neonates are born every year, with ratios of 10-15% of total births. In industrialized countries, preterm delivery is responsible for 70% of mortality and 75% of morbidity in the neonatal period. Diagnostic means for its timely risk assessment are lacking and the underlying physiological mechanisms are unclear. Surface recording of the uterine myoelectrical activity (electrohysterogram, EHG) has emerged as a better uterine dynamics monitoring technique than traditional surface pressure recordings and provides information on the condition of uterine muscle in different obstetrical scenarios with emphasis on predicting preterm deliveries. Objective: A comprehensive review of the literature was performed on studies related to the use of the electrohysterogram in the PTB context. Approach: This review presents and discusses the results according to the different types of parameter (temporal and spectral, non-linear and bivariate) used for EHG characterization. Main results: Electrohysterogram analysis reveals that the uterine electrophysiological changes that precede spontaneous preterm labor are associated with contractions of more intensity, higher frequency content, faster and more organized propagated activity and stronger coupling of different uterine areas. Temporal, spectral, non-linear and bivariate EHG analyses therefore provide useful and complementary information. Classificatory techniques of different types and varying complexity have been developed to diagnose PTB. The information derived from these different types of EHG parameters, either individually or in combination, is able to provide more accurate predictions of PTB than current clinical methods. However, in order to extend EHG to clinical applications, the recording set-up should be simplified, be less intrusive and more robust-and signal analysis should be automated without requiring much supervision and yield physiologically interpretable results. Significance: This review provides a general background to PTB and describes how EHG can be used to better understand its underlying physiological mechanisms and improve its prediction. The findings will help future research workers to decide the most appropriate EHG features to be used in their analyses and facilitate future clinical EHG applications in order to improve PTB prediction.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under grant DPI2015-68397-R.Garcia-Casado, J.; Ye Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola Rubio, J.; Perales Marin, AJ. (2018). Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement. 39(2). https://doi.org/10.1088/1361-6579/aaad56S39

    Assessment of Features between Multichannel Electrohysterogram for Differentiation of Labors

    Full text link
    [EN] Electrohysterogram (EHG) is a promising method for noninvasive monitoring of uterine electrical activity. The main purpose of this study was to characterize the multichannel EHG signals to distinguish between term delivery and preterm birth, as well as deliveries within and beyond 24 h. A total of 219 pregnant women were grouped in two ways: (1) term delivery (TD), threatened preterm labor (TPL) with the outcome of preterm birth (TPL_PB), and TPL with the outcome of term delivery (TPL_TD); (2) EHG recording time to delivery (TTD) 24 h. Three bipolar EHG signals were analyzed for the 30 min recording. Six EHG features between multiple channels, including multivariate sample entropy, mutual information, correlation coefficient, coherence, direct partial Granger causality, and direct transfer entropy, were extracted to characterize the coupling and information flow between channels. Significant differences were found for these six features between TPL and TD, and between TTD 24 h. No significant difference was found between TPL_PB and TPL_TD. The results indicated that EHG signals of TD were more regular and synchronized than TPL, and stronger coupling between multichannel EHG signals was exhibited as delivery approaches. In addition, EHG signals propagate downward for the majority of pregnant women regardless of different labors. In conclusion, the coupling and propagation features extracted from multichannel EHG signals could be used to differentiate term delivery and preterm birth and may predict delivery within and beyond 24 h.This research was funded by the National Key R&D Program, grant number 2019YFC0119700, and the National Natural Science Foundation of China, grant number U20A20388.Zhang, Y.; Hao, D.; Yang, L.; Zhou, X.; Ye Lin, Y.; Yang, Y. (2022). Assessment of Features between Multichannel Electrohysterogram for Differentiation of Labors. Sensors. 22(9):1-18. https://doi.org/10.3390/s2209335211822

    Robust Characterization of the Uterine Myoelectrical Activity in Different Obstetric Scenarios

    Full text link
    [EN] Electrohysterography (EHG) has been shown to provide relevant information on uterine activity and could be used for predicting preterm labor and identifying other maternal fetal risks. The extraction of high-quality robust features is a key factor in achieving satisfactory prediction systems from EHG. Temporal, spectral, and non-linear EHG parameters have been computed to characterize EHG signals, sometimes obtaining controversial results, especially for non-linear parameters. The goal of this work was to assess the performance of EHG parameters in identifying those robust enough for uterine electrophysiological characterization. EHG signals were picked up in different obstetric scenarios: antepartum, including women who delivered on term, labor, and post-partum. The results revealed that the 10th and 90th percentiles, for parameters with falling and rising trends as labor approaches, respectively, differentiate between these obstetric scenarios better than median analysis window values. Root-mean-square amplitude, spectral decile 3, and spectral moment ratio showed consistent tendencies for the different obstetric scenarios as well as non-linear parameters: Lempel-Ziv, sample entropy, spectral entropy, and SD1/SD2 when computed in the fast wave high bandwidth. These findings would make it possible to extract high quality and robust EHG features to improve computer-aided assessment tools for pregnancy, labor, and postpartum progress and identify maternal fetal risks.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and the Generalitat Valenciana (AICO/2019/220 & GV/2018/104)Mas-Cabo, J.; Ye Lin, Y.; Garcia-Casado, J.; Díaz-Martínez, MDA.; Perales-Marin, A.; Monfort-Ortiz, R.; Roca-Prats, A.... (2020). Robust Characterization of the Uterine Myoelectrical Activity in Different Obstetric Scenarios. Entropy. 22(7):1-15. https://doi.org/10.3390/e22070743S115227Wagura, P., Wasunna, A., Laving, A., Wamalwa, D., & Ng’ang’a, P. (2018). Prevalence and factors associated with preterm birth at kenyatta national hospital. BMC Pregnancy and Childbirth, 18(1). doi:10.1186/s12884-018-1740-2Liu, L., Johnson, H. L., Cousens, S., Perin, J., Scott, S., Lawn, J. E., … Black, R. E. (2012). Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. The Lancet, 379(9832), 2151-2161. doi:10.1016/s0140-6736(12)60560-1Howson, C. P., Kinney, M. V., McDougall, L., & Lawn, J. E. (2013). Born Too Soon: Preterm birth matters. Reproductive Health, 10(S1). doi:10.1186/1742-4755-10-s1-s1Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-sChkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yMas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-yVinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005Garcia-Casado, J., Ye-Lin, Y., Prats-Boluda, G., Mas-Cabo, J., Alberola-Rubio, J., & Perales, A. (2018). Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement, 39(2), 02TR01. doi:10.1088/1361-6579/aaad56Most, O., Langer, O., Kerner, R., Ben David, G., & Calderon, I. (2008). Can myometrial electrical activity identify patients in preterm labor? American Journal of Obstetrics and Gynecology, 199(4), 378.e1-378.e6. doi:10.1016/j.ajog.2008.08.003Verdenik, I., Pajntar, M., & Leskošek, B. (2001). Uterine electrical activity as predictor of preterm birth in women with preterm contractions. European Journal of Obstetrics & Gynecology and Reproductive Biology, 95(2), 149-153. doi:10.1016/s0301-2115(00)00418-8Horoba, K., Jezewski, J., Matonia, A., Wrobel, J., Czabanski, R., & Jezewski, M. (2016). Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybernetics and Biomedical Engineering, 36(4), 574-583. doi:10.1016/j.bbe.2016.06.004Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228.e1-228.e10. doi:10.1016/j.ajog.2010.09.024Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7Leman, H., Marque, C., & Gondry, J. (1999). Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering, 46(10), 1222-1229. doi:10.1109/10.790499Mischi, M., Chen, C., Ignatenko, T., de Lau, H., Ding, B., Oei, S. G. G., & Rabotti, C. (2018). Dedicated Entropy Measures for Early Assessment of Pregnancy Progression From Single-Channel Electrohysterography. IEEE Transactions on Biomedical Engineering, 65(4), 875-884. doi:10.1109/tbme.2017.2723933Garfield, R. E., Maner, W. L., MacKay, L. B., Schlembach, D., & Saade, G. R. (2005). Comparing uterine electromyography activity of antepartum patients versus term labor patients. American Journal of Obstetrics and Gynecology, 193(1), 23-29. doi:10.1016/j.ajog.2005.01.050Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8DIMITROV, G. V., ARABADZHIEV, T. I., MILEVA, K. N., BOWTELL, J. L., CRICHTON, N., & DIMITROVA, N. A. (2006). Muscle Fatigue during Dynamic Contractions Assessed by New Spectral Indices. Medicine & Science in Sports & Exercise, 38(11), 1971-1979. doi:10.1249/01.mss.0000233794.31659.6dNagarajan, R., Eswaran, H., Wilson, J. D., Murphy, P., Lowery, C., & Preißl, H. (2003). Analysis of uterine contractions: a dynamical approach. The Journal of Maternal-Fetal & Neonatal Medicine, 14(1), 8-21. doi:10.1080/jmf.14.1.8.21Zhang, X.-S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering, 48(12), 1424-1433. doi:10.1109/10.966601Garfield, R. E., Maner, W. L., Maul, H., & Saade, G. R. (2005). Use of uterine EMG and cervical LIF in monitoring pregnant patients. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 103-108. doi:10.1111/j.1471-0528.2005.00596.xGrotegut, C. A., Paglia, M. J., Johnson, L. N. C., Thames, B., & James, A. H. (2011). Oxytocin exposure during labor among women with postpartum hemorrhage secondary to uterine atony. American Journal of Obstetrics and Gynecology, 204(1), 56.e1-56.e6. doi:10.1016/j.ajog.2010.08.02

    Uterine myoelectrical activity as biomarker of successful induction with Dinoprostone: Influence of parity

    Full text link
    [EN] The prolonged latent phase of Induction of Labour (IOL) is associated with increased risks of maternal mortality and morbidity. Electrohysterography (EHG) has outperformed traditional clinical measures monitoring labour progress. Although parity is agreed to be of particular relevance to the success of IOL, no previous EHG¿related studies have been found in the literature. We thus aimed to identify EHG¿biomarkers to predict IOL success (active phase of labour in¿¿¿24¿h) and determine the influence of the myoelectrical response on the parity of this group. Statistically significant and sustained differences between the successful and failed groups were found from 150¿min in amplitude and non¿linear parameters, especially in Spectral Entropy and in their progression rates. In the nulliparous¿parous comparison, parous women showed statistically significantly higher amplitude progression rate. These biomarkers would therefore be useful for early detection of the risk of induction failure and would help to develop more robust and generalizable IOL success¿prediction systems.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR and PID2021-124038OB-I00). Funding for open access charge: CRUE-Universitat Politècnica de ValènciaDiaz-Martinez, A.; Monfort-Ortiz, R.; Ye Lin, Y.; Garcia-Casado, J.; Nieto-Tous, M.; Nieto Del-Amor, F.; Diago-Almela, VJ.... (2023). Uterine myoelectrical activity as biomarker of successful induction with Dinoprostone: Influence of parity. Biocybernetics and Biomedical Engineering (Online). 43(1):142-156. https://doi.org/10.1016/j.bbe.2022.12.00414215643

    Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination

    Full text link
    [EN] Although preterm labor is a major cause of neonatal death and often leaves health sequels in the survivors, there are no accurate and reliable clinical tools for preterm labor prediction. The Electrohysterogram (EHG) has arisen as a promising alternative that provides relevant information on uterine activity that could be useful in predicting preterm labor. In this work, we optimized and assessed the performance of the Dispersion Entropy (DispEn) metric and compared it to conventional Sample Entropy (SampEn) in EHG recordings to discriminate term from preterm deliveries. For this, we used the two public databases TPEHG and TPEHGT DS of EHG recordings collected from women during regular checkups. The 10th, 50th and 90th percentiles of entropy metrics were computed on whole (WBW) and fast wave high (FWH) EHG bandwidths, sweeping the DispEn and SampEn internal parameters to optimize term/preterm discrimination. The results revealed that for both the FWH and WBW bandwidths the best separability was reached when computing the 10th percentile, achieving a p-value (0.00007) for DispEn in FWH, c = 7 and m = 2, associated with lower complexity preterm deliveries, indicating that DispEn is a promising parameter for preterm labor prediction.This work was supported by the Spanish ministry of economy and competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and the Generalitat Valenciana (AICO/2019/220).Nieto-Del-Amor, F.; Ye Lin, Y.; Garcia-Casado, J.; Díaz-Martínez, MDA.; González Martínez, M.; Monfort-Ortiz, R.; Prats-Boluda, G. (2021). Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination. SCITEPRESS. 260-267. https://doi.org/10.5220/0010316602600267S26026

    New electrohysterogram-based estimators of intrauterine pressure signal, tonus and contraction peak for non-invasive labor monitoring

    Full text link
    [EN] Background: Uterine activity monitoring is an essential part of managing the progress of pregnancy and labor. Although intrauterine pressure (IUP) is the only reliable method of estimating uterine mechanical activity, it is highly invasive. Since there is a direct relationship between the electrical and mechanical activity of uterine cells, surface electrohysterography (EHG) has become a noninvasive monitoring alternative. The Teager energy (TE) operator of the EHG signal has been used for IUP continuous pressure estimation, although its accuracy could be improved. We aimed to develop new optimized IUP estimation models for clinical application. Approach: We first considered enhancing the optimal estimation of IUP clinical features (maximum pressure and tonus) rather than optimizing the signal only (continuous pressure). An adaptive algorithm was also developed to deal with inter-patient variability. For each optimizing signal feature (continuous pressure, maximum pressure and tonus), individual (single patient), global (full database) and adaptive models were built to estimate the recorded IUP signal. The results were evaluated by computing the root mean square errors (RMSe): continuous pressure error (CPe), maximum pressure error (MPe) and tonus error (TOe). Main results: The continuous pressure global model yielded IUP estimates with Cpe = 14.61mm Hg, MPe = 29.17mm Hg and Toe = 7.8mm Hg. The adaptive models significantly reduced errors to CPe = 11.88, MPe = 16.02 and Toe = 5.61mm Hg. The EHG-based IUP estimates outperformed those from traditional tocographic recordings, which had significantly higher errors (CPe = 21.93, MPe = 26.97, and TOe = 13.96). Significance: Our results show that adaptive models yield better IUP estimates than the traditional approaches and provide the best balance of the different errors computed for a better assessment of the labor progress and maternal and fetal wellbeing.This research project was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (DPI2015-68397-R), and by the projects UPV_ FE-2018-C03 and GV/2018/104.Benalcazar-Parra, C.; Garcia-Casado, J.; Ye Lin, Y.; Alberola-Rubio, J.; LĂłpez-Corral, A.; Perales Marin, AJ.; Prats-Boluda, G. (2019). New electrohysterogram-based estimators of intrauterine pressure signal, tonus and contraction peak for non-invasive labor monitoring. Physiological Measurement. 40(8):1-12. https://doi.org/10.1088/1361-6579/ab37dbS11240

    Optimization of Imminent Labor Prediction Systems in Women with Threatened Preterm Labor Based on Electrohysterography

    Full text link
    [EN] Preterm birth is the leading cause of death in newborns and the survivors are prone to health complications. Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy. The current methods used in clinical practice to diagnose preterm labor, the Bishop score or cervical length, have high negative predictive values but not positive ones. In this work we analyzed the performance of computationally efficient classification algorithms, based on electrohysterographic recordings (EHG), such as random forest (RF), extreme learning machine (ELM) and K-nearest neighbors (KNN) for imminent labor (<7 days) prediction in women with TPL, using the 50th or 10th-90th percentiles of temporal, spectral and nonlinear EHG parameters with and without obstetric data inputs. Two criteria were assessed for the classifier design: F1-score and sensitivity. RFF1_2 and ELMF1_2 provided the highest F1-score values in the validation dataset, (88.17 +/- 8.34% and 90.2 +/- 4.43%) with the 50th percentile of EHG and obstetric inputs. ELMF1_2 outperformed RFF1_2 in sensitivity, being similar to those of ELMSens (sensitivity optimization). The 10th-90th percentiles did not provide a significant improvement over the 50th percentile. KNN performance was highly sensitive to the input dataset, with a high generalization capability.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR); by the Generalitat Valenciana (AICO/2019/220).Prats-Boluda, G.; Pastor-Tronch, J.; Garcia-Casado, J.; Monfort-Ortiz, R.; Perales MarĂ­n, A.; Diago, V.; Roca Prats, A.... (2021). Optimization of Imminent Labor Prediction Systems in Women with Threatened Preterm Labor Based on Electrohysterography. Sensors. 21(7):1-18. https://doi.org/10.3390/s21072496S11821
    corecore