81,966 research outputs found

    Empirical characterization and modeling of power consumption and energy aware scheduling in data centers

    Get PDF
    Energy-efficient management is key in modern data centers in order to reduce operational cost and environmental contamination. Energy management and renewable energy utilization are strategies to optimize energy consumption in high-performance computing. In any case, understanding the power consumption behavior of physical servers in datacenter is fundamental to implement energy-aware policies effectively. These policies should deal with possible performance degradation of applications to ensure quality of service. This thesis presents an empirical evaluation of power consumption for scientific computing applications in multicore systems. Three types of applications are studied, in single and combined executions on Intel and AMD servers, for evaluating the overall power consumption of each application. The main results indicate that power consumption behavior has a strong dependency with the type of application. Additional performance analysis shows that the best load of the server regarding energy efficiency depends on the type of the applications, with efficiency decreasing in heavily loaded situations. These results allow formulating models to characterize applications according to power consumption, efficiency, and resource sharing, which provide useful information for resource management and scheduling policies. Several scheduling strategies are evaluated using the proposed energy model over realistic scientific computing workloads. Results confirm that strategies that maximize host utilization provide the best energy efficiency.Agencia Nacional de Investigación e Innovación FSE_1_2017_1_14478

    Mission Aware Energy Saving Strategies For Army Ground Vehicles

    Get PDF
    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is on, gear is on neutral position, the vehicle is stationary, and the alternator powers the systems. The proposed energy saving strategy for silent surveillance mission minimizes unnecessary battery discharges by controlling the power states of systems according to the mission needs and available battery capacity. Initial experiments show that the proposed approach saves 3% energy when compared with the baseline strategy for one scenario and 1.8% for the second scenario. The proposed energy saving strategy for normal surveillance mission operates the engine at fuel-efficient speeds to meet vehicle demand and to save fuel. The experiment and simulation uses a computerized vehicle model and a test bench to validate the approach. In comparison to vehicles with fixed high-idle engine speed increments, experiments show that the proposed strategy saves fuel energy in the range of 0-4.9% for the tested power demand range of 44-69 kW. It is hoped to implement the proposed strategies on a real Army ground vehicle to start realizing the energy savings

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    Home Energy Consumption Feedback: A User Survey

    Get PDF
    Buildings account for a relevant fraction of the energy consumed by a country, up to 20-40% of the yearly energy consumption. If only electricity is considered, the fraction is even bigger, reaching around 73% of the total electricity consumption, equally divided into residential and commercial dwellings. Building and Home Automation have a potential to profoundly impact current and future buildings' energy efficiency by informing users about their current consumption patterns, by suggesting more efficient behaviors, and by pro-actively changing/modifying user actions for reducing the associated energy wastes. In this paper we investigate the capability of an automated home to automatically, and timely, inform users about energy consumption, by harvesting opinions of residential inhabitants on energy feedback interfaces. We report here the results of an on-line survey, involving nearly a thousand participants, about feedback mechanisms suggested by the research community, with the goal of understanding what feedback is felt by home inhabitants easier to understand, more likely to be used, and more effective in promoting behavior changes. Contextually, we also collect and distill users' attitude towards in-home energy displays and their preferred locations, gathering useful insights on user-driven design of more effective in-home energy display

    Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput and extending battery life of user equipments. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered as bidders that compete for channel resources, and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication, and present numerical simulations to verify the proposed algorithm.Comment: IEEE Transactions on Wireless Communication

    Memetic Multi-Objective Particle Swarm Optimization-Based Energy-Aware Virtual Network Embedding

    Full text link
    In cloud infrastructure, accommodating multiple virtual networks on a single physical network reduces power consumed by physical resources and minimizes cost of operating cloud data centers. However, mapping multiple virtual network resources to physical network components, called virtual network embedding (VNE), is known to be NP-hard. With considering energy efficiency, the problem becomes more complicated. In this paper, we model energy-aware virtual network embedding, devise metrics for evaluating performance of energy aware virtual network-embedding algorithms, and propose an energy aware virtual network-embedding algorithm based on multi-objective particle swarm optimization augmented with local search to speed up convergence of the proposed algorithm and improve solutions quality. Performance of the proposed algorithm is evaluated and compared with existing algorithms using extensive simulations, which show that the proposed algorithm improves virtual network embedding by increasing revenue and decreasing energy consumption.Comment: arXiv admin note: text overlap with arXiv:1504.0684
    corecore