38,894 research outputs found

    Affinity Paths and Information Diffusion in Social Networks

    Full text link
    Widespread interest in the diffusion of information through social networks has produced a large number of Social Dynamics models. A majority of them use theoretical hypothesis to explain their diffusion mechanisms while the few empirically based ones average out their measures over many messages of different content. Our empirical research tracking the step-by-step email propagation of an invariable viral marketing message delves into the content impact and has discovered new and striking features. The topology and dynamics of the propagation cascades display patterns not inherited from the email networks carrying the message. Their disconnected, low transitivity, tree-like cascades present positive correlation between their nodes probability to forward the message and the average number of neighbors they target and show increased participants' involvement as the propagation paths length grows. Such patterns not described before, nor replicated by any of the existing models of information diffusion, can be explained if participants make their pass-along decisions based uniquely on local knowledge of their network neighbors affinity with the message content. We prove the plausibility of such mechanism through a stylized, agent-based model that replicates the \emph{Affinity Paths} observed in real information diffusion cascades.Comment: 11 pages, 7 figure

    VGM-RNN: Recurrent Neural Networks for Video Game Music Generation

    Get PDF
    The recent explosion of interest in deep neural networks has affected and in some cases reinvigorated work in fields as diverse as natural language processing, image recognition, speech recognition and many more. For sequence learning tasks, recurrent neural networks and in particular LSTM-based networks have shown promising results. Recently there has been interest – for example in the research by Google’s Magenta team – in applying so-called “language modeling” recurrent neural networks to musical tasks, including for the automatic generation of original music. In this work we demonstrate our own LSTM-based music language modeling recurrent network. We show that it is able to learn musical features from a MIDI dataset and generate output that is musically interesting while demonstrating features of melody, harmony and rhythm. We source our dataset from VGMusic.com, a collection of user-submitted MIDI transcriptions of video game songs, and attempt to generate output which emulates this kind of music

    Conceptualizing human resilience in the face of the global epidemiology of cyber attacks

    Get PDF
    Computer security is a complex global phenomenon where different populations interact, and the infection of one person creates risk for another. Given the dynamics and scope of cyber campaigns, studies of local resilience without reference to global populations are inadequate. In this paper we describe a set of minimal requirements for implementing a global epidemiological infrastructure to understand and respond to large-scale computer security outbreaks. We enumerate the relevant dimensions, the applicable measurement tools, and define a systematic approach to evaluate cyber security resilience. From the experience in conceptualizing and designing a cross-national coordinated phishing resilience evaluation we describe the cultural, logistic, and regulatory challenges to this proposed public health approach to global computer assault resilience. We conclude that mechanisms for systematic evaluations of global attacks and the resilience against those attacks exist. Coordinated global science is needed to address organised global ecrime

    Are Opinions Based on Science: Modelling Social Response to Scientific Facts

    Get PDF
    As scientists we like to think that modern societies and their members base their views, opinions and behaviour on scientific facts. This is not necessarily the case, even though we are all (over-) exposed to information flow through various channels of media, i.e. newspapers, television, radio, internet, and web. It is thought that this is mainly due to the conflicting information on the mass media and to the individual attitude (formed by cultural, educational and environmental factors), that is, one external factor and another personal factor. In this paper we will investigate the dynamical development of opinion in a small population of agents by means of a computational model of opinion formation in a co-evolving network of socially linked agents. The personal and external factors are taken into account by assigning an individual attitude parameter to each agent, and by subjecting all to an external but homogeneous field to simulate the effect of the media. We then adjust the field strength in the model by using actual data on scientific perception surveys carried out in two different populations, which allow us to compare two different societies. We interpret the model findings with the aid of simple mean field calculations. Our results suggest that scientifically sound concepts are more difficult to acquire than concepts not validated by science, since opposing individuals organize themselves in close communities that prevent opinion consensus.Comment: 21 pages, 5 figures. Submitted to PLoS ON
    • …
    corecore