193 research outputs found

    Controlling a drone: Comparison between a based model method and a fuzzy inference system

    Get PDF
    International audienceThe work describes an automatically on-line self-tunable fuzzy inference system (STFIS) of a new configuration of mini-flying called XSF (X4 Stationnary Flyer) drone. A fuzzy controller based on on-line optimization of a zero order Takagi-Sugeno fuzzy inference system (FIS) by a back propagation-like algorithm is successfully applied. It is used to minimize a cost function that is made up of a quadratic error term and a weight decay term that prevents an excessive growth of parameters. Thus, we carried out control for the continuation of simple trajectories such as the follow-up of straight lines, and complex (half circle, corner, and helicoidal) by using the STFIS technique. This permits to prove the effectiveness of the proposed control law. Simulation results and a comparison with a static feedback linearization controller (SFL) are presented and discussed. We studied the robustness of the two controllers used in the presence of disturbances. We presented two types of disturbances, the case of a breakdown of an engine as well as a gust of wind

    Nonlinear Controller Design for UAVs with Time-Varying Aerodynamic Uncertainties

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are here and they are here to stay. Unmanned Aviation has expanded significantly in recent years and research and development in the field of navigation and control have advanced beyond expectations. UAVs are currently being used for defense programs around the world but the range of applications is expected to grow in the near future, with civilian applications such as environmental and aerial monitoring, aerial surveillance and homeland security being some representative examples. Conventional and commercially available small-scale UAVs have limited utilization and applicability to executing specific short-duration missions because of limitations in size, payload, power supply and endurance. This fact has already marked the dawn of a new era of more powerful and versatile UAVs (e.g. morphing aircraft), able to perform a variety of missions. This dissertation presents a novel, comprehensive, step-by-step, nonlinear controller design framework for new generation, non-conventional UAVs with time-varying aerodynamic characteristics during flight. Controller design for such UAVs is a challenging task mainly due to uncertain aerodynamic parameters in the UAV mathematical model. This challenge is tackled by using and implementing Ό-analysis and additive uncertainty weighting functions. The technique described herein can be generalized and applied to the class of non-conventional UAVs, seeking to address uncertainty challenges regarding the aircraft\u27s aerodynamic coefficients

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Pedestrian-Aware Supervisory Control System Interactive Optimization of Connected Hybrid Electric Vehicles via Fuzzy Adaptive Cost Map and Bees Algorithm

    Get PDF
    Electrified vehicles are increasingly being seen as a means of mitigating the pressing concerns of traffic-related pollution. Due to the nature of engine-assisted vehicle exhaust systems, pedestrians in close proximity to these vehicles may experience events where specific emission concentrations are high enough to cause health effects. To minimize pedestrians’ exposure to vehicle emissions and pollutants nearby, we present a pedestrian-aware supervisory control system for connected hybrid electric vehicles by proposing an interactive optimization methodology. This optimization methodology combines a novel fuzzy adaptive cost map and the Bees Algorithm to optimize power-split control parameters. It enables the self-regulation of inter-objective weights of fuel and exhaust emissions based on the real-time pedestrian density information during the optimization process. The evaluation of the vehicle performance by using the proposed methodology is conducted on the realistic trip map involving pedestrian density information collected from the University College Dublin campus. Moreover, two bootstrap sampling techniques and effect of communication quality are both investigated in order to examine the robustness of the improved vehicle system. The results demonstrate that 14.42% mass of exhaust emissions can be reduced for the involved pedestrians, by using the developed fuzzy adaptive cost map

    Enhanced genetic algorithm-based back propagation neural network to diagnose conditions of multiple-bearing system

    Get PDF
    Condition diagnosis of critical system such as multiple-bearing system is one of the most important maintenance activities in industry because it is essential that faults are detected early before the performance of the whole system is affected. Currently, the most significant issues in condition diagnosis are how to improve accuracy and stability of accuracy, as well as lessen the complexity of the diagnosis which would reduce processing time. Researchers have developed diagnosis techniques based on metaheuristic, specifically, Back Propagation Neural Network (BPNN) for single bearing system and small numbers of condition classes. However, they are not directly applicable or effective for multiple-bearing system because the diagnosis accuracy achieved is unsatisfactory. Therefore, this research proposed hybrid techniques to improve the performance of BPNN in terms of accuracy and stability of accuracy by using Adaptive Genetic Algorithm and Back Propagation Neural Network (AGA-BPNN), and multiple BPNN with AGA-BPNN (mBPNNAGA- BPNN). These techniques are tested and validated on vibration signal data of multiple-bearing system. Experimental results showed the proposed techniques outperformed the BPPN in condition diagnosis. However, the large number of features from multiple-bearing system has affected the complexity of AGA-BPNN and mBPNN-AGA-BPNN, and significantly increased the amount of required processing time. Thus to investigate further, whether the number of features required can be reduced without compromising the diagnosis accuracy and stability, Grey Relational Analysis (GRA) was applied to determine the most dominant features in reducing the complexity of the diagnosis techniques. The experimental results showed that the hybrid of GRA and mBPNN-AGA-BPNN achieved accuracies of 99% for training, 100% for validation and 100% for testing. Besides that, the performance of the proposed hybrid accuracy increased by 11.9%, 13.5% and 11.9% in training, validation and testing respectively when compared to the standard BPNN. This hybrid has lessened the complexity which reduced nearly 55.96% of processing time. Furthermore, the hybrid has improved the stability of the accuracy whereby the differences in accuracy between the maximum and minimum values were 0.2%, 0% and 0% for training, validation and testing respectively. Hence, it can be concluded that the proposed diagnosis techniques have improved the accuracy and stability of accuracy within the minimum complexity and significantly reduced processing time

    Robust predictive tracking control for a class of nonlinear systems

    Get PDF
    A robust predictive tracking control (RPTC) approach is developed in this paper to deal with a class of nonlinear SISO systems. To improve the control performance, the RPTC architecture mainly consists of a robust fuzzy PID (RFPID)-based control module and a robust PI grey model (RPIGM)-based prediction module. The RFPID functions as the main control unit to drive the system to desired goals. The control gains are online optimized by neural network-based fuzzy tuners. Meanwhile using grey and neural network theories, the RPIGM is designed with two tasks: to forecast the future system output which is fed to the RFPID to optimize the controller parameters ahead of time; and to estimate the impacts of noises and disturbances on the system performance in order to create properly a compensating control signal. Furthermore, a fuzzy grey cognitive map (FGCM)-based decision tool is built to regulate the RPIGM prediction step size to maximize the control efforts. Convergences of both the predictor and controller are theoretically guaranteed by Lyapunov stability conditions. The effectiveness of the proposed RPTC approach has been proved through real-time experiments on a nonlinear SISO system

    Pedestrian-aware supervisory control system interactive optimization of connected hybrid electric vehicles via fuzzy adaptive cost map and bees algorithm

    Get PDF
    Electrified vehicles are increasingly being seen as a means of mitigating the pressing concerns of traffic-related pollution. Due to the nature of engine-assisted vehicle exhaust systems, pedestrians in close proximity to these vehicles may experience events where specific emission concentrations are high enough to cause health effects. To minimize pedestrians’ exposure to vehicle emissions and pollutants nearby, we present a pedestrian-aware supervisory control system for connected hybrid electric vehicles by proposing an interactive optimization methodology. This optimization methodology combines a novel fuzzy adaptive cost map and the Bees Algorithm to optimize power-split control parameters. It enables the self-regulation of inter-objective weights of fuel and exhaust emissions based on the real-time pedestrian density information during the optimization process. The evaluation of the vehicle performance by using the proposed methodology is conducted on the realistic trip map involving pedestrian density information collected from the University College Dublin campus. Moreover, two bootstrap sampling techniques and effect of communication quality are both investigated in order to examine the robustness of the improved vehicle system. The results demonstrate that 14.42% mass of exhaust emissions can be reduced for the involved pedestrians, by using the developed fuzzy adaptive cost map

    Multi-Objective Trajectory Planning of Mobile Parallel Manipulator

    Get PDF
    • 

    corecore