2,007 research outputs found

    Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    Get PDF
    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed

    Magnetically suspended miniature fluid pump and method of designing the same

    Get PDF
    A rotary pump for pumping fluids through a patient having a housing with an internal region, a stator member and an impeller positioned within the housing and having impeller blades, wherein the impeller is magnetically suspended and rotated, and wherein the geometric configuration of the rotary pump is sized and proportioned to minimize stagnant and traumatic fluid flow within the rotary pump. The plurality of magnetic impeller blades are preferably rare earth, high-energy-density magnets selected from the group consisting of samarium cobalt and neodymium-iron-boron alloy

    The annulling of the sudden appearance of an unbalance in rotary machines by using active magnetic bearings

    Get PDF
    The application of magnetic bearings has become more frequent during the last 20 years and represents a significant aspect of improvements in the construction of machines with rotary motion. With the advancement of technology, the number of applications in which magnetic bearings have found their application is increasing. In this paper, it is shown how the effect of magnetic forces can annul the negative influence of unbalance, which suddenly appeared in a rotor supported in active magnetic bearings. Such cases may occur in operation due to breakage and rotor parts falling off (e.g., fan blades), which will lead to a sudden change in the mass balance of the rotor system and dislocation of the centre of mass in relation to the geometric centre of the rotor. In the paper, a mathematical model of the dynamic behaviour of a rigid rotor in active magnetic bearings was developed. The model is nonlinear and has five degrees of freedom and can only be solved numerically. The Newmark beta method and the Newton-Raphson method were used to solve the system of nonlinear differential equations. The results of the simulation showed the advantages of using active magnetic bearings for annulling sudden occurrences of unbalance in rotary machines

    Magnetic Bearings

    Get PDF
    The term magnetic bearings refers to devices that provide stable suspension of a rotor. Because of the contact-less motion of the rotor, magnetic bearings offer many advantages for various applications. Commercial applications include compressors, centrifuges, high-speed turbines, energy-storage flywheels, high-precision machine tools, etc. Magnetic bearings are a typical mechatronic product. Thus, a great deal of knowledge is necessary for its design, construction and operation. This book is a collection of writings on magnetic bearings, presented in fragments and divided into six chapters. Hopefully, this book will provide not only an introduction but also a number of key aspects of magnetic bearings theory and applications. Last but not least, the presented content is free, which is of great importance, especially for young researcher and engineers in the field

    Overview of Flywheel Systems for Renewable Energy Storage with a Design Study for High-Speed Axial-Flux Permanent-Magnet Machines

    Get PDF
    Flywheel energy storage is considered in this paper for grid integration of renewable energy sources due to its inherent advantages of fast response, long cycle life and flexibility in providing ancillary services to the grid, such as frequency regulation, voltage support, etc. The fundamentals of the technology and recent developments are reviewed, firstly with an emphasis on the design considerations and performance metrics. Then the progress and development trends in electric motor/generators employed in flywheel energy storage systems (FESS) are summarized, showing the potential of axial-flux permanent-magnet (AFPM) machines in such applications. Design examples of high-speed AFPM machines are provided and evaluated in terms of specific power, efficiency, and open-circuit losses in order to validate their suitability in FESS

    Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing

    Get PDF
    We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose two-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing six-pole rotating flux, which drags the rotor via hysteresis coupling. This six-pole flux does not generate radial forces in conjunction with the homopolar flux or two-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has 12 teeth, each of which has a single-phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflectivetype optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25° at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 r/min. The maximum driving torque is about 2.7 mNm

    The future of electrical power grids: a direction rooted in power electronics

    Get PDF
    Electrical power grids are changing with a focus on ensuring energy sustainability and enhanced power quality for all sectors. Over the last few decades, there has been a change from a centralized to a decentralized paradigm, which is the consequence of a large-scale incorporation of new electrical technologies and resultant equipment. Considering the foreseeable continuation of changes in electrical power grids, a direction rooted in power electronics with a focus on hybrid AC/DC grids, including the support of solid-state transformers and unified systems, is presented in this paper. Converging on hybrid AC/DC grids, DC grids (structured as unipolar and bipolar) and coupled and decoupled AC configurations are analyzed. On the other hand, in the context of solid-state transformers, feasible structures are analyzed, including the establishment of hybrid AC/DC grids, and the assessment of gains for boosting power quality is presented. Unified power electronics systems are also of fundamental importance when contextualized within the framework of future power grids, presenting higher efficiency, lower power stages, and the possibility of multiple operations to support the main AC grid. In this paper, such subjects are discussed and contextualized within the framework of future power grids, encompassing highly important and modern structures and their associated challenges. Various situations are characterized, revealing a gradual integration of the cited technologies for future power grids, which are also known as smart grids.This work was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020
    corecore