1,335 research outputs found

    Anomaly Crossing: New Horizons for Video Anomaly Detection as Cross-domain Few-shot Learning

    Full text link
    Video anomaly detection aims to identify abnormal events that occurred in videos. Since anomalous events are relatively rare, it is not feasible to collect a balanced dataset and train a binary classifier to solve the task. Thus, most previous approaches learn only from normal videos using unsupervised or semi-supervised methods. Obviously, they are limited in capturing and utilizing discriminative abnormal characteristics, which leads to compromised anomaly detection performance. In this paper, to address this issue, we propose a new learning paradigm by making full use of both normal and abnormal videos for video anomaly detection. In particular, we formulate a new learning task: cross-domain few-shot anomaly detection, which can transfer knowledge learned from numerous videos in the source domain to help solve few-shot abnormality detection in the target domain. Concretely, we leverage self-supervised training on the target normal videos to reduce the domain gap and devise a meta context perception module to explore the video context of the event in the few-shot setting. Our experiments show that our method significantly outperforms baseline methods on DoTA and UCF-Crime datasets, and the new task contributes to a more practical training paradigm for anomaly detection

    Boundary Discretization and Reliable Classification Network for Temporal Action Detection

    Full text link
    Temporal action detection aims to recognize the action category and determine the starting and ending time of each action instance in untrimmed videos. The mixed methods have achieved remarkable performance by simply merging anchor-based and anchor-free approaches. However, there are still two crucial issues in the mixed framework: (1) Brute-force merging and handcrafted anchors design affect the performance and practical application of the mixed methods. (2) A large number of false positives in action category predictions further impact the detection performance. In this paper, we propose a novel Boundary Discretization and Reliable Classification Network (BDRC-Net) that addresses the above issues by introducing boundary discretization and reliable classification modules. Specifically, the boundary discretization module (BDM) elegantly merges anchor-based and anchor-free approaches in the form of boundary discretization, avoiding the handcrafted anchors design required by traditional mixed methods. Furthermore, the reliable classification module (RCM) predicts reliable action categories to reduce false positives in action category predictions. Extensive experiments conducted on different benchmarks demonstrate that our proposed method achieves favorable performance compared with the state-of-the-art. For example, BDRC-Net hits an average mAP of 68.6% on THUMOS'14, outperforming the previous best by 1.5%. The code will be released at https://github.com/zhenyingfang/BDRC-Net.Comment: 12 pages, Source code: https://github.com/zhenyingfang/BDRC-Ne

    A Hybrid Graph Network for Complex Activity Detection in Video

    Full text link
    Interpretation and understanding of video presents a challenging computer vision task in numerous fields - e.g. autonomous driving and sports analytics. Existing approaches to interpreting the actions taking place within a video clip are based upon Temporal Action Localisation (TAL), which typically identifies short-term actions. The emerging field of Complex Activity Detection (CompAD) extends this analysis to long-term activities, with a deeper understanding obtained by modelling the internal structure of a complex activity taking place within the video. We address the CompAD problem using a hybrid graph neural network which combines attention applied to a graph encoding the local (short-term) dynamic scene with a temporal graph modelling the overall long-duration activity. Our approach is as follows: i) Firstly, we propose a novel feature extraction technique which, for each video snippet, generates spatiotemporal `tubes' for the active elements (`agents') in the (local) scene by detecting individual objects, tracking them and then extracting 3D features from all the agent tubes as well as the overall scene. ii) Next, we construct a local scene graph where each node (representing either an agent tube or the scene) is connected to all other nodes. Attention is then applied to this graph to obtain an overall representation of the local dynamic scene. iii) Finally, all local scene graph representations are interconnected via a temporal graph, to estimate the complex activity class together with its start and end time. The proposed framework outperforms all previous state-of-the-art methods on all three datasets including ActivityNet-1.3, Thumos-14, and ROAD.Comment: This paper is Accepted at WACV 202

    DiffTAD: Temporal Action Detection with Proposal Denoising Diffusion

    Full text link
    We propose a new formulation of temporal action detection (TAD) with denoising diffusion, DiffTAD in short. Taking as input random temporal proposals, it can yield action proposals accurately given an untrimmed long video. This presents a generative modeling perspective, against previous discriminative learning manners. This capability is achieved by first diffusing the ground-truth proposals to random ones (i.e., the forward/noising process) and then learning to reverse the noising process (i.e., the backward/denoising process). Concretely, we establish the denoising process in the Transformer decoder (e.g., DETR) by introducing a temporal location query design with faster convergence in training. We further propose a cross-step selective conditioning algorithm for inference acceleration. Extensive evaluations on ActivityNet and THUMOS show that our DiffTAD achieves top performance compared to previous art alternatives. The code will be made available at https://github.com/sauradip/DiffusionTAD.Comment: Technical Repor
    • …
    corecore