23 research outputs found

    Study, Measurements and Characterisation of a 5G system using a Mobile Network Operator Testbed

    Get PDF
    The goals for 5G are aggressive. It promises to deliver enhanced end-user experience by offering new applications and services through gigabit speeds, and significantly improved performance and reliability. The enhanced mobile broadband (eMBB) 5G use case, for instance, targets peak data rates as high as 20 Gbps in the downlink (DL) and 10 Gbps in the uplink (UL). While there are different ways to improve data rates, spectrum is at the core of enabling higher mobile broadband data rates. 5G New Radio (NR) specifies new frequency bands below 6 GHz and also extends into mmWave frequencies where more contiguous bandwidth is available for sending lots of data. However, at mmWave frequencies, signals are more susceptible to impairments. Hence, extra consideration is needed to determine test approaches that provide the precision required to accurately evaluate 5G components and devices. Therefore, the aim of the thesis is to provide a deep dive into 5G technology, explore its testing and validation, and thereafter present the OTE (Hellenic Telecommunications Organisation) 5G testbed, including measurement results obtained and its characterisation based on key performance indicators (KPIs)

    Compact Reconfigurable Antennas for Wireless Systems and Wearable Applications

    Get PDF
    The fast growth of wireless communications has driven the necessity of exploiting technological solutions for the needs of faster connectivity. While bandwidth allocation and effective radiated power (ERP) are subjected to regulatory constrain, alternative solutions have been developed to overcome the challenges that arise in terms of wireless coverage and number of users. Reconfigurable antennas (RAs) technology is one of the hardware solutions developed to enhance the connectivity between wireless devices. These new class of radiating elements are able to adapt their physical characteristics in response to the environmental changes or users density and location. Reconfigurable antennas can be divided into two main categories: frequency reconfigurable antennas and pattern reconfigurable antennas. The former class of RAs are able to switch the operational frequency in order to move the communication within unoccupied channels. The latter category defines those antennas that are able to change their radiation characteristics (radiation pattern or polarization) in response to the dynamics of the surrounding environment. Unlike conventional static antennas where the energy is wasted around the surrounding space, the use of RAs allows for a smarter management of the radiated energy as the beam can be focused toward specific directions. As a result, not only data throughput between two devices can be improved but also the interference between adjacent networks can be reduced significantly. n this PhD thesis we focus on the design, prototyping and system application of compact RAs for wireless base stations and mobile devices. Specifically, the first task focuses on the design of a compact reconfigurable antenna capable of generating omnidirectional and directional beams in a single planar design. Next, we propose to apply a miniaturization technique in order to drastically reduce the size of Composite Right-Left Handed Reconfigurable Leaky Wave Antennas (CRLH RLWAs). The large beam steering capabilities along with the miniaturized dimension open new venues for the integration of this antenna technology into mobile devices such as laptop or tablets. Similarly for electrically reconfigurable antennas, characteristics such as input impedance and radiation properties of a radiating element can vary by mechanically change its physical dimension. In other words, instead of changing the metallic geometry through electrical components, the characteristics of an antenna can be changed through physical deformation of its geometry. This principle addresses the second main application of reconfigurable antennas this PhD thesis. Wearable technologies are gaining a lot of attentions due to their strong potential for sensing, communication and tactile interaction applications. Thanks to the progress in knitting facilities and techniques, smart fabrics are generally implemented through sewn-in sensors especially in the fields of medical and athletic applications. Such wearable sensors provide a means to monitor the wearers health through physiological measurements in a natural setting or can be used to detect or alert care providers to potential hazards around the wearer. The feasibility of building electrical devices using conductive fabrics has been analyzed through electrical characterization of textile transmission lines and antennas where conductive fabrics have been applied onto woven fabrics have been demonstrated in recent literature. Previous works show conductive copper foils or fabrics bonded to a flexible substrate. However, these techniques show limitations in terms of electrical losses caused by adhesives or glue chemicals. It is desirable to address these drawbacks by knitting conductive and non-conductive yarns in a single process resulting in smart textiles that are unobtrusively integrated into the host garment so as to eliminate the need for chemical adhesives that degrade electrical performance. The characteristics variations of a fabric-based antenna under physical deformations can be exploited to provide a fully wireless sensing of certain body movements. The second task of this PhD thesis, focuses on the design and testing of these purely textile wireless sensors for biomedical applications. The Radio-Frequency Identification (RFID) technology will be applied fordesigning fabric-based strain sensors through the use of novel inductively-coupled RFID microchips (MAGICSTRAP). As opposed to conventional surface-mount microchips, the MAGICSTRAP does not require any physical soldering connection as the RF energy is inductively coupled from the microchip pads to the antenna arms. A separate interrogator unit can communicate with this knit passive RFID architecture by sending a probing signal; the backscattered component received from the knit tag will indicate the level of stretch, and this information will be translated in the physical phenomenon being monitored. The change in the electrical characteristics of the textile antenna, along with the decoupling of the MAGICTRAP chip allow for more reliable detection of contraction/elongation movements. This study will include comprehensive design and characterization of the textile tag sensor along with performance analysis using a mechanical human mannequin.Ph.D., Electrical Engineering -- Drexel University, 201

    Performance Evaluation of SDMA Coordination Schemes for WiMAX Systems

    Get PDF
    Premi Accenture al millor projecte de fi de carrera d’Enginyeria de Telecomunicació en Serveis Telemàtics.(Curs 2008-2009) Projecte realitzat en col.laboració amb el centre Aachen University of Technology.Advanced antenna technologies that are technically mature are currently being integrated into modern wireless systems such asWiMAX or LTE. Capacity and service quality provided by wireless links, as well as the spectral efficiency, are expected to be significantly boosted by advanced antenna techniques that are using multiple antennas either at the transmitter, at the receiver or at both sides. Beamforming or Space Division Multiple Access (SDMA) techniques are able to simultaneously transmit different signals to different receivers. Furthermore, concurrent reception of different signals is provided by joint detection techniques. In this manner the Medium Access Control (MAC) layer can also schedule stations separated in space. Thus, the capacity of the system can be increased with the number of concurrent data streams. But an SDMA enabled cell generates more varying interference than a conventional cell, because a changing number of subscriber stations are sending uplink data in parallel or DL streams with changing direction are transmitted by the base station. Thereby the SINR estimation becomes less precise and the link adaptation less effective. This thesis investigates schemes for mitigating inter-cell interference and increasing the precision of SINR estimations in SDMA enhanced system. Three concepts of coordination of BS are developed, implemented and evaluated in this work. System level simulations are conducted in a cellular deployment by means of the open Wireless Network Simulator (openWNS). They show the considerable gain of the developed enhancements compared to an uncoordinated systemAward-winnin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice
    corecore