14,643 research outputs found

    A Heuristic Based Multi-Objective Approach for Network Reconfiguration of Distribution Systems

    Get PDF
    This paper presents an algorithm for network reconfiguration based on the heuristic rules and fuzzy multi-objective approach with an improved Fast Decoupled load flow algorithm. Multiple objectives are considered to minimize the real power loss, deviation in bus voltages, branch current violation and for load balancing among feeders, while subjected to a radial network structure in which all loads kept energized. These four objectives are modeled with fuzzy sets to evaluate their imprecise nature. Heuristic rules are also incorporated in the algorithm for drastically minimizing the number of tie-switch operations. An improved Fast Decoupled load flow algorithm with Single Matrix Model (FDC-SMM) has been proposed for distribution networks. The proposed algorithm is very effective in dealing with reconfiguration problems of single and multi-feeder networks Keywords: Multi-objective approach, Reconfiguration, Fuzzy set theory, Fast decoupled load flo

    An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers

    Full text link
    In energy systems with high shares of weather-driven renewable power sources, gas-fired power plants can serve as a back-up technology to ensure security of supply and provide short-term flexibility. Therefore, a tighter coordination between electricity and natural gas networks is foreseen. In this work, we examine different levels of coordination in terms of system integration and time coupling of trading floors. We propose an integrated operational model for electricity and natural gas systems under uncertain power supply by applying two-stage stochastic programming. This formulation co-optimizes day-ahead and real-time dispatch of both energy systems and aims at minimizing the total expected cost. Additionally, two deterministic models, one of an integrated energy system and one that treats the two systems independently, are presented. We utilize a formulation that considers the linepack of the natural gas system, while it results in a tractable mixed-integer linear programming (MILP) model. Our analysis demonstrates the effectiveness of the proposed model in accommodating high shares of renewables and the importance of proper natural gas system modeling in short-term operations to reveal valuable flexibility of the natural gas system. Moreover, we identify the coordination parameters between the two markets and show their impact on the system's operation and dispatch

    Preparing HPC Applications for the Exascale Era: A Decoupling Strategy

    Full text link
    Production-quality parallel applications are often a mixture of diverse operations, such as computation- and communication-intensive, regular and irregular, tightly coupled and loosely linked operations. In conventional construction of parallel applications, each process performs all the operations, which might result inefficient and seriously limit scalability, especially at large scale. We propose a decoupling strategy to improve the scalability of applications running on large-scale systems. Our strategy separates application operations onto groups of processes and enables a dataflow processing paradigm among the groups. This mechanism is effective in reducing the impact of load imbalance and increases the parallel efficiency by pipelining multiple operations. We provide a proof-of-concept implementation using MPI, the de-facto programming system on current supercomputers. We demonstrate the effectiveness of this strategy by decoupling the reduce, particle communication, halo exchange and I/O operations in a set of scientific and data-analytics applications. A performance evaluation on 8,192 processes of a Cray XC40 supercomputer shows that the proposed approach can achieve up to 4x performance improvement.Comment: The 46th International Conference on Parallel Processing (ICPP-2017
    • …
    corecore