155 research outputs found

    Decoupled Power Control With Indepth Analysis of Single-Phase Electric Springs

    Get PDF
    Electric spring (ES) as a new effective way to solve the power quality issues caused by the uncertainty of wind and photovoltaic (PV) power, has the advantages of small volume, flexible configuration and low cost. Aiming at improving the dynamic responses of the existing power control for ES-2, a new control with in-depth analysis on the decoupling of the active and reactive powers is proposed in this paper. By introducing second order generalized integrator phase locked loop (SOGI-PLL) and fictitious-axis emulator (FAE) into the control algorithm, the virtual orthogonal voltage and current signals were constructed and the mathematic model of ES-2 in the dq axis synchronous rotating reference frame was established. Then, the control system consisting of three closed loops, namely active power loop, current loop and ES voltage loop, is arranged. Among the three loops, a damped proportional resonance (PR) controller is adopted in the ES voltage loop to ensure the accurate control of the output voltage of ES-2. Instead, traditional PI controllers are used for the current and power loops. Finally, the effectiveness of the proposed decoupled power control is validated by both simulation and experimental results

    Satellite power system: Concept development and evaluation program, reference system report

    Get PDF
    The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites

    Energy-based control approaches in human-robot collaborative disassembly

    Get PDF

    An Induced Environment Contamination Monitor for the Space Shuttle

    Get PDF
    The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given

    Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    Get PDF
    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined

    Symmetry in Renewable Energy and Power Systems

    Get PDF
    This book includes original research papers related to renewable energy and power systems in which theoretical or practical issues of symmetry are considered. The book includes contributions on voltage stability analysis in DC networks, optimal dispatch of islanded microgrid systems, reactive power compensation, direct power compensation, optimal location and sizing of photovoltaic sources in DC networks, layout of parabolic trough solar collectors, topologic analysis of high-voltage transmission grids, geometric algebra and power systems, filter design for harmonic current compensation. The contributions included in this book describe the state of the art in this field and shed light on the possibilities that the study of symmetry has in power grids and renewable energy systems

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    The 1981 NASA/ASEE Summer Faculty Fellowship Program: Research reports

    Get PDF
    Research reports related to spacecraft industry technological advances, requirements, and applications were considered. Some of the topic areas addressed were: (1) Fabrication, evaluation, and use of high performance composites and ceramics, (2) antenna designs, (3) electronics and microcomputer applications and mathematical modeling and programming techniques, (4) design, fabrication, and failure detection methods for structural materials, components, and total systems, and (5) chemical studies of bindary organic mixtures and polymer synthesis. Space environment parameters were also discussed

    Proceedings of the Workshop on Identification and Control of Flexible Space Structures, volume 1

    Get PDF
    Identification and control of flexible space structures were studied. Exploration of the most advanced modeling estimation, identification and control methodologies to flexible space structures was discussed. The following general areas were discussed: space platforms, antennas, and flight experiments; control/structure interactions - modeling, integrated design and optimization, control and stabilization, and shape control; control technology; control of space stations; large antenna control, dynamics and control experiments, and control/structure interaction experiments
    • …
    corecore