6,032 research outputs found

    Robot skill learning system of multi-space fusion based on dynamic movement primitives and adaptive neural network control

    Get PDF
    This article develops a robot skill learning system with multi-space fusion, simultaneously considering motion/stiffness generation and trajectory tracking. To begin with, surface electromyography (sEMG) signals from the human arm is captured based on the MYO armband to estimate endpoint stiffness. Gaussian Process Regression (GPR) is combined with dynamic movement primitive (DMP) to extract more skills features from multi-demonstrations. Then, the traditional DMP formulation is improved based on the Riemannian metric to encode the robot's quaternions with non-Euclidean properties. Furthermore, an adaptive neural network (NN)-based finite-time admittance controller is designed to track the trajectory generated by the motion model and to reflect the learned stiffness characteristics. In this controller, a radial basis function neural network (RBFNN) is employed to compensate for the uncertainty of the robot dynamics. Finally, experimental validation is conducted using the ROKAE collaborative robot, confirming the effectiveness of the proposed approach. In summary, the presented framework is suitable for human-robot skill transfer method that require simultaneous consideration of position and stiffness in Euclidean space, as well as orientation on Riemannian manifolds

    Exploiting Structural Properties in the Analysis of High-dimensional Dynamical Systems

    Get PDF
    The physical and cyber domains with which we interact are filled with high-dimensional dynamical systems. In machine learning, for instance, the evolution of overparametrized neural networks can be seen as a dynamical system. In networked systems, numerous agents or nodes dynamically interact with each other. A deep understanding of these systems can enable us to predict their behavior, identify potential pitfalls, and devise effective solutions for optimal outcomes. In this dissertation, we will discuss two classes of high-dimensional dynamical systems with specific structural properties that aid in understanding their dynamic behavior. In the first scenario, we consider the training dynamics of multi-layer neural networks. The high dimensionality comes from overparametrization: a typical network has a large depth and hidden layer width. We are interested in the following question regarding convergence: Do network weights converge to an equilibrium point corresponding to a global minimum of our training loss, and how fast is the convergence rate? The key to those questions is the symmetry of the weights, a critical property induced by the multi-layer architecture. Such symmetry leads to a set of time-invariant quantities, called weight imbalance, that restrict the training trajectory to a low-dimensional manifold defined by the weight initialization. A tailored convergence analysis is developed over this low-dimensional manifold, showing improved rate bounds for several multi-layer network models studied in the literature, leading to novel characterizations of the effect of weight imbalance on the convergence rate. In the second scenario, we consider large-scale networked systems with multiple weakly-connected groups. Such a multi-cluster structure leads to a time-scale separation between the fast intra-group interaction due to high intra-group connectivity, and the slow inter-group oscillation, due to the weak inter-group connection. We develop a novel frequency-domain network coherence analysis that captures both the coherent behavior within each group, and the dynamical interaction between groups, leading to a structure-preserving model-reduction methodology for large-scale dynamic networks with multiple clusters under general node dynamics assumptions

    Multi-epoch machine learning for galaxy formation

    Get PDF
    In this thesis I utilise a range of machine learning techniques in conjunction with hydrodynamical cosmological simulations. In Chapter 2 I present a novel machine learning method for predicting the baryonic properties of dark matter only subhalos taken from N-body simulations. The model is built using a tree-based algorithm and incorporates subhalo properties over a wide range of redshifts as its input features. I train the model using a hydrodynamical simulation which enables it to predict black hole mass, gas mass, magnitudes, star formation rate, stellar mass, and metallicity. This new model surpasses the performance of previous models. Furthermore, I explore the predictive power of each input property by looking at feature importance scores from the tree-based model. By applying the method to the LEGACY N-body simulation I generate a large volume mock catalog of the quasar population at z=3. By comparing this mock catalog with observations, I demonstrate that the IllustrisTNG subgrid model for black holes is not accurately capturing the growth of the most massive objects. In Chapter 3 I apply my method to investigate the evolution of galaxy properties in different simulations, and in various environments within a single simulation. By comparing the Illustris, EAGLE, and TNG simulations I show that subgrid model physics plays a more significant role than the choice of hydrodynamics method. Using the CAMELS simulation suite I consider the impact of cosmological and astrophysical parameters on the buildup of stellar mass within the TNG and SIMBA models. In the final chapter I apply a combination of neural networks and symbolic regression methods to construct a semi-analytic model which reproduces the galaxy population from a cosmological simulation. The neural network based approach is capable of producing a more accurate population than a previous method of binning based on halo mass. The equations resulting from symbolic regression are found to be a good approximation of the neural network

    Knowledge-informed neuro-integrators for aggregation kinetics

    Get PDF
    We report a novel approach for the efficient computation of solutions of a broad class of large-scale systems of non-linear ordinary differential equations, describing aggregation kinetics. The method is based on a new take on the dimensionality reduction for this class of equations which can be naturally implemented by a cascade of small feed-forward artificial neural networks. We show that this cascade, of otherwise static models, is capable of predicting solutions of the original large-scale system over large intervals of time, using the information about the solution computed over much smaller intervals. The computational cost of the method depends very mildly on the temporalhorizon, which is a major improvement over the current state-of-the-art methods, whose complexity increases super-linearly with the system’s size and proportionally to the simulation time. In cases when prior information about the values of solutions over a relatively small interval of time is already available, the method’s computational complexity does not depend explicitly on the system’s size. The successful application of the new method is illustrated for spatially-homogeneous systems, with a source of monomers, for a number of the most representative reaction rates kernels

    Learning and Control of Dynamical Systems

    Get PDF
    Despite the remarkable success of machine learning in various domains in recent years, our understanding of its fundamental limitations remains incomplete. This knowledge gap poses a grand challenge when deploying machine learning methods in critical decision-making tasks, where incorrect decisions can have catastrophic consequences. To effectively utilize these learning-based methods in such contexts, it is crucial to explicitly characterize their performance. Over the years, significant research efforts have been dedicated to learning and control of dynamical systems where the underlying dynamics are unknown or only partially known a priori, and must be inferred from collected data. However, much of these classical results have focused on asymptotic guarantees, providing limited insights into the amount of data required to achieve desired control performance while satisfying operational constraints such as safety and stability, especially in the presence of statistical noise. In this thesis, we study the statistical complexity of learning and control of unknown dynamical systems. By utilizing recent advances in statistical learning theory, high-dimensional statistics, and control theoretic tools, we aim to establish a fundamental understanding of the number of samples required to achieve desired (i) accuracy in learning the unknown dynamics, (ii) performance in the control of the underlying system, and (iii) satisfaction of the operational constraints such as safety and stability. We provide finite-sample guarantees for these objectives and propose efficient learning and control algorithms that achieve the desired performance at these statistical limits in various dynamical systems. Our investigation covers a broad range of dynamical systems, starting from fully observable linear dynamical systems to partially observable linear dynamical systems, and ultimately, nonlinear systems. We deploy our learning and control algorithms in various adaptive control tasks in real-world control systems and demonstrate their strong empirical performance along with their learning, robustness, and stability guarantees. In particular, we implement one of our proposed methods, Fourier Adaptive Learning and Control (FALCON), on an experimental aerodynamic testbed under extreme turbulent flow dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-art stabilization performance and consistently outperforms conventional and other learning-based methods by at least 37%, despite using 8 times less data. The superior performance of FALCON arises from its physically and theoretically accurate modeling of the underlying nonlinear turbulent dynamics, which yields rigorous finite-sample learning and performance guarantees. These findings underscore the importance of characterizing the statistical complexity of learning and control of unknown dynamical systems.</p

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Extension of the Control Concept for a Mobile Overhead Manipulator to Whole-Body Impedance Control

    Get PDF
    At present, robots constitute a central component of contemporary factories. The application of traditional ground-based systems, however, may lead to congested floors with minimal space left for new robots or human workers. Overhead manipulators, on the other hand, aim to occupy the unutilized ceiling space, in order to manipulate the workspace located below them. The SwarmRail system is an example of such an overhead manipulator. This concept deploys mobile units driving across a passive railstructure above the ground. Additionally, equipping the mobile units with robotic arms at their bottom side enables this design to provide continuous overhead manipulation while in motion. Although a first demonstrator confirmed the functional capability of said system, the current hardware suffers from complications while traversing rail crossings. Due to uneven rails consecutive rails, said crossing points cause the robot's wheels to collide with the new rail segment it is driving towards. Additionally, the robot experiences an undesired sudden altitude change. In this thesis, we aim to implement a hierarchical whole-body impedance tracking controller for the robots employed within the SwarmRail system. Our controller combines a kinematically controlled mobile unit with the impedance-based control of a robotic arm through an admittance interface. The focus of this thesis is set on the controller's robustness against the previously mentioned external disturbances. The performance of this controller is validated inside a simulation that incorporates the aforementioned complications. Our findings suggest, that the control strategy presented in this thesis provides a foundation for the development of a controller applicable to the physical demonstrator

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Statistical methods to understand and visualise the complex behaviour of clouds in the climate system

    Get PDF
    Uncertainty surrounding cloud responses to changes in their environments contributes majorly to uncertainty in the radiative effects of aerosol and predictions of future climates. Stratocumulus clouds exert a strong net cooling effect due to their high albedo and large horizontal extent, yet their behaviour in the climate system is particularly uncertain due to their high sensitivity to surroundings. High-resolution modelling is crucial for studying stratocumulus behaviours, which are made up of many complex interacting processes, on many scales from large-scale dynamics to the microphysical responses to aerosol. However, many studies perturb cloud-controlling factors one at a time, which makes it challenging to identify interactions with other factors and how they jointly affect cloud properties. To understand the complex behaviour of marine stratocumulus clouds, this thesis uses two statistical methods: perturbed parameter ensembles and Gaussian process emulation. Perturbed parameter ensembles perturb multiple factors simultaneously so that their joint effects can be analysed. Furthermore, these ensembles can be used as training data for Gaussian process emulation, which is used to create statistical representations of the relationships between multiple cloud-controlling factors and cloud properties of interest. The emulators are used to generate the values of cloud properties for many new combinations of factor values, which allows the joint effects of parameters to be analysed and parameter contributions to the variances in the cloud properties to be quantified. Firstly, two properties of the free troposphere are perturbed from simulations of a homogeneous, nocturnal stratocumulus cloud to analyse cloud behaviour around the break-up threshold for cloud-top entrainment instability. Dense sampling using emulators of liquid water path and cloud fraction showed that there were non-linear interactions between the two perturbed factors and two behavioural regimes. Additionally, a method for approximating the natural variability of the cloud and accounting for it in the emulator build was demonstrated. Secondly, the stratocumulus-to-cumulus transition was simulated to study the roles of aerosol and drizzle in the context of other cloud-controlling factors. From the base simulation, one model parameter and five cloud-controlling factors were perturbed across reasonable ranges. Analysis of the perturbed parameter ensemble showed that the fastest transitions occurred in low-aerosol environments combined with deep boundary layers, high autoconversion rates and dry temperature inversions. When the ensemble was split into high- and low-drizzle environments, the inversion strength was found to have a strong control on transition time, via entrainment, in low-drizzle environments. Thirdly, the ensemble of stratocumulus-to-cumulus transitions was used as training data for Gaussian process emulation, which allowed the joint effects of parameters in transition properties to be fully visualised and quantified. Emulation revealed that there was a low-aerosol regime, where aerosol concentration strongly controlled the transition time, but outside that regime, the transition time was largely dependent on the inversion strength. The transition time was found to be a complex process that was influenced by multiple interacting parameters, whereas the rain water path is controlled by individual parameters

    ENGINEERING HIGH-RESOLUTION EXPERIMENTAL AND COMPUTATIONAL PIPELINES TO CHARACTERIZE HUMAN GASTROINTESTINAL TISSUES IN HEALTH AND DISEASE

    Get PDF
    In recent decades, new high-resolution technologies have transformed how scientists study complex cellular processes and the mechanisms responsible for maintaining homeostasis and the emergence and progression of gastrointestinal (GI) disease. These advances have paved the way for the use of primary human cells in experimental models which together can mimic specific aspects of the GI tract such as compartmentalized stem-cell zones, gradients of growth factors, and shear stress from fluid flow. The work presented in this dissertation has focused on integrating high-resolution bioinformatics with novel experimental models of the GI epithelium systems to describe the complexity of human pathophysiology of the human small intestines, colon, and stomach in homeostasis and disease. Here, I used three novel microphysiological systems and developed four computational pipelines to describe comprehensive gene expression patterns of the GI epithelium in various states of health and disease. First, I used single cell RNAseq (scRNAseq) to establish the transcriptomic landscape of the entire epithelium of the small intestine and colon from three human donors, describing cell-type specific gene expression patterns in high resolution. Second, I used single cell and bulk RNAseq to model intestinal absorption of fatty acids and show that fatty acid oxidation is a critical regulator of the flux of long- and medium-chain fatty acids across the epithelium. Third, I use bulk RNAseq and a machine learning model to describe how inflammatory cytokines can regulate proliferation of intestinal stem cells in an experimental model of inflammatory hypoxia. Finally, I developed a high throughput platform that can associate phenotype to gene expression in clonal organoids, providing unprecedented resolution into the relationship between comprehensive gene expression patterns and their accompanying phenotypic effects. Through these studies, I have demonstrated how the integration of computational and experimental approaches can measurably advance our understanding of human GI physiology.Doctor of Philosoph
    • 

    corecore