64 research outputs found

    Array interpolation methods with applications in wireless sensor networks and global positioning systems

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, 2013.Nas últimas três décadas o estudo de técnicas de processamento de sinais em arranjos de sensores tem recebido grande atenção. Uma grande quantidade de técnicas foi desenvolvida com diversas finalidades como a estimação da direção de chegada, a filtragem ou separação espacial dos sinais recebidos, a estimação do atraso de propagação, a estimação da frequência Doppler e a pré-codificação de sinais na transmissão para maximização da potência recebida por outro arranjo. Técnicas para estimação da direção de chegada são de particular interesse para sistemas de posicionamento baseado em ondas de rádio, como os sistemas de posicionamento global e para o mapeamento de sensores em redes de sensores. Uma particularidade dessas aplicações é a necessidade de uma estimação em tempo real ou computacionalmente eficiente. Técnicas de estimação da direção de chegada que atendem esses requisitos requerem uma estrutura muito específica do arranjo de antenas que, em geral, não pode ser obtida em implementações reais. Nesse trabalho é apresentado um conjunto de técnicas que permitem a interpolação de sinais recebidos em arranjos de geometria arbitrária para arranjos de geometria específica, de forma eficiente e robusta, para possibilitar a aplicação de técnicas eficientes para estimação da direção de chegada em arranjos de geometria arbitrária. Como aplicações das técnicas propostas são apresentados o mapeamento preciso em redes de sensores e posicionamento preciso em receptores de sistemas de posicionamento global. _______________________________________________________________________________________ ABSTRACTIn the last three decades the study of antenna array signal processing techniques has received significant attention. A large number of techniques have been developed with different purposes such as the estimation of the direction of arrival (DOA), filtering or spatial separation of received signals, estimation of time delay of arrival (TDOA), Doppler frequency estimation and precoding of transmitted signals to maximize the power received by a different array. DOA estimation techniques are of particular interest for positioning systems based on radio waves such as the global positioning system (GPS) and for sensor mapping in wireless sensor networks (WSNs). These applications have the particular requirement of demanding the estimations to be made in real time or with reduced computational complexity. DOA estimation techniques that fulfill these requirements demand very specific antenna array structures that cannot, in general, be obtained in real implementations. In this work a set of techniques is presented that allows the interpolation of signals received in arrays of arbitrary geometry into arrays of specific geometry efficiently and robustly to allow the application of efficient DOA estimation techniques in arrays of arbitrary geometry. As an application of the proposed techniques precise mapping for WSNs and precise positioning for GPS receivers is presented

    Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX 20) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Get PDF
    The NASA Propagation Experimenters (NAPEX) Meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom) industry, academia, and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at these meetings by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satcom industry

    Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Get PDF
    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program

    Multiple moving target detection with ultra wideband radar using super-resolution algorithms

    Get PDF
    The improvements in microwave electronics opened the way to build microwave components such as low noise amplifiers, samplers and pulse generators that are broadband. As these building blocks are being developed, new applications become subject of research. Ultra wideband radar is one of these subjects. Major applications of ultra wideband radars are behind the wall imaging, biomedical imaging and buried land mine detection. In this study we aimed to locate multiple scatterers that are moving. Even though there are many scatterers in an environment, detection of moving targets is possible using differences of successive radar snapshots. This is generally the case when behind the wall human targets are to be detected. We investigated the effectiveness of various types Multiple Signal Classification (MUSIC) algorithms on the data acquired by our ultra wideband radar prototype. In ideal computer simulations, Time Reversal MUSIC (TRM) algorithm provides successful estimations of both directions and distances of multiple targets. However in practice where non-ideal effects are existent, the performance of TRM algorithm is estimating the target distances degrades. On the other hand, Delay Estimation MUSIC algorithm provides better estimates for the distances of the targets since it is less sensitive to phase noise. Combining the output of TRM algorithm for target directions and the output of Delay Estimation MUSIC method for target distances resulted in successful localization of targets. Experiments are performed using two moving targets in order to test the effectiveness the proposed processing scheme. The problem of detection ambiguities is also considered and several methods to resolve actual targets are presented

    Bayesian Inference Methods for Sparse Channel Estimation

    Get PDF

    Software defined radar system

    Get PDF
    Software defined radar concept and simulation -- Signal processing methods of synthetic software defined radar -- Mixer-based synthetic software defined radar -- Six-port-based syunthetic software defined radar -- Performance study of synthetic software defined radar

    ATS-6 engineering performance report. Volume 5: Propagation experiments

    Get PDF
    Propagation experiments at 1550 MHz to 1650 MHz are reviewed, including the Integrated L-Band Experiments system and results, and the Mobile L-Band Terminals for Satellite Communication system. Experiments at 4 GHz to 6 GHz are reported, including the Radio Frequency Interferometer Measurements system and results, and Earth station antenna evaluations. Experiments above 10 GHz are discussed, including Comsat and ATS-6 millimeter wave propagation/experiments, and communication ATS-6 version at 20 and 30 GHz

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore