467 research outputs found

    SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science goals, survey design and instrumentation

    Get PDF
    The Molonglo Observatory Synthesis Telescope, operating at 843 MHz with a 5 square degree field of view, is carrying out a radio imaging survey of the sky south of declination -30 deg. This survey (the Sydney University Molonglo Sky Survey, or SUMSS) produces images with a resolution of 43" x 43" cosec(Dec.) and an rms noise level of about 1 mJy/beam. SUMSS is therefore similar in sensitivity and resolution to the northern NRAO VLA Sky Survey (NVSS; Condon et al. 1998). The survey is progressing at a rate of about 1000 square degrees per year, yielding individual and statistical data for many thousands of weak radio sources. This paper describes the main characteristics of the survey, and presents sample images from the first year of observation.Comment: 27 pages, 12 figures (figures 2, 8, 10 in jpg format); AJ, in pres

    Garnet-controlled very low velocities in the lower mantle transition zone at sites of mantle upwelling

    Get PDF
    Deep mantle plumes and associated increased geotherms are expected to cause an upward deflection of the lower–upper mantle boundary and an overall thinning of the mantle transition zone between about 410 and 660 kilometres depth. We use subsequent forward modelling of mineral assemblages, seismic velocities and receiver functions to explain the common paucity of such observations in receiver function data. In the lower mantle transition zone, large horizontal differences in seismic velocities may result from temperature‐dependent assemblage variations. At this depth, primitive mantle compositions are dominated by majoritic garnet at high temperatures. Associated seismic velocities are expected to be much lower than for ringwoodite‐rich assemblages at undisturbed thermal conditions. Neglecting this ultra‐low‐velocity zone at upwelling sites can cause a miscalculation of the lower–upper mantle boundary on the order of 20 kilometres

    Fabrication and testing of an airborne ice particle counter

    Get PDF
    An optical ice particle counter was proposed as a companion instrument to the GSFC laser nephelometer. By counting ice particles and total cloud particles (both ice and liquid water), these two instruments may be used to study the balance between ice and water in clouds

    Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors

    Full text link
    A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.Comment: 13 pages, 5 figure

    Two planets around Kapteyn's star: a cold and a temperate super-Earth orbiting the nearest halo red dwarf

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society - Letters. ©: 2014 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Exoplanets of a few Earth masses can be now detected around nearby low-mass stars using Doppler spectroscopy. In this Letter, we investigate the radial velocity variations of Kapteyn's star, which is both a sub-dwarf M-star and the nearest halo object to the Sun. The observations comprise archival and new HARPS (High Accuracy Radial velocity Planet Searcher), High Resolution Echelle Spectrometer (HIRES) and Planet Finder Spectrograph (PFS) Doppler measurements. Two Doppler signals are detected at periods of 48 and 120 d using likelihood periodograms and a Bayesian analysis of the data. Using the same techniques, the activity indices and archival All Sky Automated Survey (ASAS-3) photometry show evidence for low-level activity periodicities of the order of several hundred days. However, there are no significant correlations with the radial velocity variations on the same time-scales. The inclusion of planetary Keplerian signals in the model results in levels of correlated and excess white noise that are remarkably low compared to younger G, K and M dwarfs. We conclude that Kapteyn's star is most probably orbited by two super-Earth mass planets, one of which is orbiting in its circumstellar habitable zone, becoming the oldest potentially habitable planet known to date. The presence and long-term survival of a planetary system seem a remarkable feat given the peculiar origin and kinematic history of Kapteyn's star. The detection of super-Earth mass planets around halo stars provides important insights into planet-formation processes in the early days of the Milky Way.Peer reviewe

    Source-filter Separation of Speech Signal in the Phase Domain

    Get PDF
    Deconvolution of the speech excitation (source) and vocal tract (filter) components through log-magnitude spectral processing is well-established and has led to the well-known cepstral features used in a multitude of speech processing tasks. This paper presents a novel source-filter decomposition based on processing in the phase domain. We show that separation between source and filter in the log-magnitude spectra is far from perfect, leading to loss of vital vocal tract information. It is demonstrated that the same task can be better performed by trend and fluctuation analysis of the phase spectrum of the minimum-phase component of speech, which can be computed via the Hilbert transform. Trend and fluctuation can be separated through low-pass filtering of the phase, using additivity of vocal tract and source in the phase domain. This results in separated signals which have a clear relation to the vocal tract and excitation components. The effectiveness of the method is put to test in a speech recognition task. The vocal tract component extracted in this way is used as the basis of a feature extraction algorithm for speech recognition on the Aurora-2 database. The recognition results shows upto 8.5% absolute improvement in comparison with MFCC features on average (0-20dB)

    Measuring cosmic density of neutral hydrogen via stacking the DINGO-VLA data

    Get PDF
    We use the 21-cm emission-line data from the Deep Investigation of Neutral Gas Origin-Very Large Array (DINGO-VLA) project to study the atomic hydrogen gas H I of the Universe at redshifts z \u3c 0.1. Results are obtained using a stacking analysis, combining the H I signals from 3622 galaxies extracted from 267 VLA pointings in the G09 field of the Galaxy and Mass Assembly Survey (GAMA). Rather than using a traditional one-dimensional spectral stacking method, a three-dimensional cubelet stacking method is used to enable deconvolution and the accurate recovery of average galaxy fluxes from this high-resolution interferometric data set. By probing down to galactic scales, this experiment also overcomes confusion corrections that have been necessary to include in previous single-dish studies. After stacking and deconvolution, we obtain a 30σ H I mass measurement from the stacked spectrum, indicating an average H I mass of MHI=(1.67±0.18)×109 M⊙ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eMHI=(1.67±0.18)×109 M⊙MHI=(1.67±0.18)×109 M⊙⁠. The corresponding cosmic density of neutral atomic hydrogen is ΩHI=(0.38±0.04)×10−3 role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eΩHI=(0.38±0.04)×10−3ΩHI=(0.38±0.04)×10−3 at redshift of z = 0.051. These values are in good agreement with earlier results, implying there is no significant evolution of ΩHI role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3eΩHIΩHI at lower redshifts

    Rapid Spatial Mapping of Focused Ultrasound Fields Using a Planar Fabry-PĂ©rot Sensor

    Get PDF
    Measurement of high acoustic pressures is necessary in order to fully characterise clinical high-intensity focused ultrasound (HIFU) fields, and for accurate validation of computational models of ultrasound propagation. However, many existing measurement devices are unable to withstand the extreme pressures generated in these fields, and those that can often exhibit low sensitivity. Here, a planar Fabry-PĂ©rot interferometer with hard dielectric mirrors and spacer was designed, fabricated, and characterised and its suitability for measurement of nonlinear focused ultrasound fields was investigated. The noise equivalent pressure of the scanning system scaled with the adjustable pressure detection range between 49 kPa for pressures up to 8 MPa and 152 kPa for measurements up to 25 MPa, over a 125 MHz measurement bandwidth. Measurements of the frequency response of the sensor showed that it varied by less than 3 dB in the range 1 - 62 MHz. The effective element size of the sensor was 65 ÎŒm and waveforms were acquired at a rate of 200 Hz. The device was used to measure the acoustic pressure in the field of a 1.1 MHz single element spherically focused bowl transducer. Measurements of the acoustic field at low pressures compared well with measurements made using a PVDF needle hydrophone. At high pressures, the measured peak focal pressures agreed well with the focal pressure modelled using the Khokhlov-Zabolotskaya-Kuznetsov equation. Maximum peak positive pressures of 25 MPa, and peak negative pressures of 12 MPa were measured, and planar field scans were acquired in scan times on the order of 1 minute. The properties of the sensor and scanning system are well suited to measurement of nonlinear focused ultrasound fields, in both the focal region and the low pressure peripheral regions. The fast acquisition speed of the system and its low noise equivalent pressure are advantageous, and with further development of the sensor, it has potential in application to HIFU metrology
    • 

    corecore