60 research outputs found

    Learning Blind Motion Deblurring

    Full text link
    As handheld video cameras are now commonplace and available in every smartphone, images and videos can be recorded almost everywhere at anytime. However, taking a quick shot frequently yields a blurry result due to unwanted camera shake during recording or moving objects in the scene. Removing these artifacts from the blurry recordings is a highly ill-posed problem as neither the sharp image nor the motion blur kernel is known. Propagating information between multiple consecutive blurry observations can help restore the desired sharp image or video. Solutions for blind deconvolution based on neural networks rely on a massive amount of ground-truth data which is hard to acquire. In this work, we propose an efficient approach to produce a significant amount of realistic training data and introduce a novel recurrent network architecture to deblur frames taking temporal information into account, which can efficiently handle arbitrary spatial and temporal input sizes. We demonstrate the versatility of our approach in a comprehensive comparison on a number of challening real-world examples.Comment: International Conference on Computer Vision (ICCV) (2017

    Light Field Blind Motion Deblurring

    Full text link
    We study the problem of deblurring light fields of general 3D scenes captured under 3D camera motion and present both theoretical and practical contributions. By analyzing the motion-blurred light field in the primal and Fourier domains, we develop intuition into the effects of camera motion on the light field, show the advantages of capturing a 4D light field instead of a conventional 2D image for motion deblurring, and derive simple methods of motion deblurring in certain cases. We then present an algorithm to blindly deblur light fields of general scenes without any estimation of scene geometry, and demonstrate that we can recover both the sharp light field and the 3D camera motion path of real and synthetically-blurred light fields.Comment: To be presented at CVPR 201

    Depth-aware motion deblurring

    Full text link

    Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Get PDF
    Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.Comment: 31 pages, 47 figure

    The Acceleration of Polynomial Methods for Blind Image Deconvolution Using Graphical Processing Units (GPUs)

    Get PDF
    Image processing has become an integral part of many areas of study. Unfortunately, the process of capturing images can often result in undesirable blurring and noise, and thus can make processing the resulting images problematic. Methods are therefore required that attempt to remove blurring. The main body of work in this field is in Bayesian methods for image deblurring, with many algorithms aimed at solving this problem relying on the Fourier transform. The Fourier transform results in the amplification of noise in the image, which can lead to many of the same problems as blurring. Winkler presented a method of blind image deconvolution (BID) without the Fourier transform, which treated the rows and columns of the blurred image as the coefficients of univariate polynomials. By treating the rows and columns of the image in this way, the problem of computing the blurring function becomes a problem of computing the greatest common divisor (GCD) of these polynomials. The computation of the GCD of two polynomials is ill posed, as any noise in the polynomials causes them to be coprime. Thus an approximate GCD (AGCD) must be computed instead. The computation of an AGCD is a computationally expensive process, resulting in the BID algorithm being expensive. The research presented in this thesis investigates the fundamental mathematical processes underpinning such an algorithm, and presents multiple methods through which this algorithm can be accelerated using a GPU. This acceleration results in an implementation that is 30 times faster than a CPU parallel approach. The process of accelerating the BID algorithm in this way required a first of its kind GPU accelerated algorithm for the computation of an AGCD, with multiple novel techniques utilised to achieve this acceleration

    Motion blur removal from photographs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 135-143).One of the long-standing challenges in photography is motion blur. Blur artifacts are generated from relative motion between a camera and a scene during exposure. While blur can be reduced by using a shorter exposure, this comes at an unavoidable trade-off with increased noise. Therefore, it is desirable to remove blur computationally. To remove blur, we need to (i) estimate how the image is blurred (i.e. the blur kernel or the point-spread function) and (ii) restore a natural looking image through deconvolution. Blur kernel estimation is challenging because the algorithm needs to distinguish the correct imageblur pair from incorrect ones that can also adequately explain the blurred image. Deconvolution is also difficult because the algorithm needs to restore high frequency image contents attenuated by blur. In this dissertation, we address a few aspects of these challenges. We introduce an insight that a blur kernel can be estimated by analyzing edges in a blurred photograph. Edge profiles in a blurred image encode projections of the blur kernel, from which we can recover the blur using the inverse Radon transform. This method is computationally attractive and is well suited to images with many edges. Blurred edge profiles can also serve as additional cues for existing kernel estimation algorithms. We introduce a method to integrate this information into a maximum-a-posteriori kernel estimation framework, and show its benefits. Deconvolution algorithms restore information attenuated by blur using an image prior that exploits a heavy-tailed gradient profile of natural images. We show, however, that such a sparse prior does not accurately model textures, thereby degrading texture renditions in restored images. To address this issue, we introduce a content-aware image prior that adapts its characteristics to local textures. The adapted image prior improves the quality of textures in restored 6 images. Sometimes even the content-aware image prior may be insufficient for restoring rich textures. This issue can be addressed by matching the restored image's gradient distribution to its original image's gradient distribution, which is estimated directly from the blurred image. This new image deconvolution technique called iterative distribution reweighting (IDR) improves the visual realism of reconstructed images. Subject motion can also cause blur. Removing subject motion blur is especially challenging because the blur is often spatially variant. In this dissertation, we address a restricted class of subject motion blur: the subject moves at a constant velocity locally. We design a new computational camera that improves the local motion estimation and, at the same time, reduces the image information loss due to blur.by Taeg Sang Cho.Ph.D

    Comprehensive retinal image analysis: image processing and feature extraction techniques oriented to the clinical task

    Get PDF
    Medical digital imaging has become a key element of modern health care procedures. It provides a visual documentation, a permanent record for the patients, and most importantly the ability to extract information about many diseases. Ophthalmology is a field that is heavily dependent on the analysis of digital images because they can aid in establishing an early diagnosis even before the first symptoms appear. This dissertation contributes to the digital analysis of such images and the problems that arise along the imaging pipeline, a field that is commonly referred to as retinal image analysis. We have dealt with and proposed solutions to problems that arise in retinal image acquisition and longitudinal monitoring of retinal disease evolution. Specifically, non-uniform illumination, poor image quality, automated focusing, and multichannel analysis. However, there are many unavoidable situations in which images of poor quality, like blurred retinal images because of aberrations in the eye, are acquired. To address this problem we have proposed two approaches for blind deconvolution of blurred retinal images. In the first approach, we consider the blur to be space-invariant and later in the second approach we extend the work and propose a more general space-variant scheme. For the development of the algorithms we have built preprocessing solutions that have enabled the extraction of retinal features of medical relevancy, like the segmentation of the optic disc and the detection and visualization of longitudinal structural changes in the retina. Encouraging experimental results carried out on real retinal images coming from the clinical setting demonstrate the applicability of our proposed solutions
    • …
    corecore