52 research outputs found

    Algorithmic Analysis Techniques for Molecular Imaging

    Get PDF
    This study addresses image processing techniques for two medical imaging modalities: Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), which can be used in studies of human body functions and anatomy in a non-invasive manner. In PET, the so-called Partial Volume Effect (PVE) is caused by low spatial resolution of the modality. The efficiency of a set of PVE-correction methods is evaluated in the present study. These methods use information about tissue borders which have been acquired with the MRI technique. As another technique, a novel method is proposed for MRI brain image segmen- tation. A standard way of brain MRI is to use spatial prior information in image segmentation. While this works for adults and healthy neonates, the large variations in premature infants preclude its direct application. The proposed technique can be applied to both healthy and non-healthy premature infant brain MR images. Diffusion Weighted Imaging (DWI) is a MRI-based technique that can be used to create images for measuring physiological properties of cells on the structural level. We optimise the scanning parameters of DWI so that the required acquisition time can be reduced while still maintaining good image quality. In the present work, PVE correction methods, and physiological DWI models are evaluated in terms of repeatabilityof the results. This gives in- formation on the reliability of the measures given by the methods. The evaluations are done using physical phantom objects, correlation measure- ments against expert segmentations, computer simulations with realistic noise modelling, and with repeated measurements conducted on real pa- tients. In PET, the applicability and selection of a suitable partial volume correction method was found to depend on the target application. For MRI, the data-driven segmentation offers an alternative when using spatial prior is not feasible. For DWI, the distribution of b-values turns out to be a central factor affecting the time-quality ratio of the DWI acquisition. An optimal b-value distribution was determined. This helps to shorten the imaging time without hampering the diagnostic accuracy.Siirretty Doriast

    Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising

    Get PDF
    Background: Accurate quantification of PET studies depends on the spatial resolution of the PET data. The commonly limited PET resolution results in partial volume effects (PVE). Iterative deconvolution methods (IDM) have been proposed as a means to correct for PVE. IDM improves spatial resolution of PET studies without the need for structural information (e.g. MR scans). On the other hand, deconvolution also increases noise, which results in lower signal-to-noise ratios (SNR). The aim of this study was to implement IDM in combination with HighlY constrained back-PRojection (HYPR) denoising to mitigate poor SNR properties of conventional IDM.Methods: An anthropomorphic Hoffman brain phantom was filled with an [F-18]FDG solution of similar to 25 kBq mL(-1) and scanned for 30 min on a Philips Ingenuity TF PET/CT scanner (Philips, Cleveland, USA) using a dynamic brain protocol with various frame durations ranging from 10 to 300 s. Van Cittert IDM was used for PVC of the scans. In addition, HYPR was used to improve SNR of the dynamic PET images, applying it both before and/or after IDM. The Hoffman phantom dataset was used to optimise IDM parameters (number of iterations, type of algorithm, with/without HYPR) and the order of HYPR implementation based on the best average agreement of measured and actual activity concentrations in the regions. Next, dynamic [C-11]flumazenil (five healthy subjects) and [C-11]PIB (four healthy subjects and four patients with Alzheimer's disease) scans were used to assess the impact of IDM with and without HYPR on plasma input-derived distribution volumes (V-T) across various regions of the brain.Results: In the case of [C-11]flumazenil scans, Hypr-IDM-Hypr showed an increase of 5 to 20% in the regional V-T whereas a 0 to 10% increase or decrease was seen in the case of [C-11]PIB depending on the volume of interest or type of subject (healthy or patient). References for these comparisons were the V(T)s from the PVE-uncorrected scans.Conclusions: IDM improved quantitative accuracy of measured activity concentrations. Moreover, the use of IDM in combination with HYPR (Hypr-IDM-Hypr) was able to correct for PVE without increasing noise.</p

    Partial volume correction strategies for quantitative FDG PET in oncology

    Get PDF
    Purpose: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods. Methods: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks. Simulations were based on a mathematical phantom with tumours of different sizes and shapes. Phantom experiments were performed in 2-D mode using the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom containing six differently sized spheres. Clinical studies (2-D mode) included a test-retest study consisting of 10 patients with stage IIIB and IV non-small cell lung cancer and a response monitoring study consisting of 15 female breast cancer patients. In all studies tumour or sphere volumes of interest (VOI) were generated using VOI based on adaptive relative thresholds. Results: Simulations and experiments provided similar results. All methods were able to accurately recover true SUV within 10% for spheres equal to and larger than 1 ml. Reconstruction-based recovery, however, provided up to twofold better precision than image-based methods. Cl

    Iterative Structural and Functional Synergistic Resolution Recovery (iSFS-RR) Applied to PET-MR Images in Epilepsy

    Get PDF
    Structural Functional Synergistic Resolution Recovery (SFS-RR) is a technique that uses supplementary structural information from MR or CT to improve the spatial resolution of PET or SPECT images. This wavelet-based method may have a potential impact on the clinical decision-making of brain focal disorders such as refractory epilepsy, since it can produce images with better quantitative accuracy and enhanced detectability. In this work, a method for the iterative application of SFS-RR (iSFS-RR) was firstly developed and optimized in terms of convergence and input voxel size, and the corrected images were used for the diagnosis of 18 patients with refractory epilepsy. To this end, PET/MR images were clinically evaluated through visual inspection, atlas-based asymmetry indices (AIs) and SPM (Statistical Parametric Mapping) analysis, using uncorrected images and images corrected with SFS-RR and iSFS-RR. Our results showed that the sensitivity can be increased from 78% for uncorrected images, to 84% for SFS-RR and 94% for the proposed iSFS-RR. Thus, the proposed methodology has demonstrated the potential to improve the management of refractory epilepsy patients in the clinical routine

    Applications of different machine learning approaches in prediction of breast cancer diagnosis delay

    Get PDF
    Background: The increasing rate of breast cancer (BC) incidence and mortality in Iran has turned this disease into a challenge. A delay in diagnosis leads to more advanced stages of BC and a lower chance of survival, which makes this cancer even more fatal. Objectives: The present study was aimed at identifying the predicting factors for delayed BC diagnosis in women in Iran. Methods: In this study, four machine learning methods, including extreme gradient boosting (XGBoost), random forest (RF), neural networks (NNs), and logistic regression (LR), were applied to analyze the data of 630 women with confirmed BC. Also, different statistical methods, including chi-square, p-value, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC), were utilized in different steps of the survey. Results: Thirty percent of patients had a delayed BC diagnosis. Of all the patients with delayed diagnoses, 88.5% were married, 72.1% had an urban residency, and 84.8% had health insurance. The top three important factors in the RF model were urban residency (12.04), breast disease history (11.58), and other comorbidities (10.72). In the XGBoost, urban residency (17.54), having other comorbidities (17.14), and age at first childbirth (>30) (13.13) were the top factors; in the LR model, having other comorbidities (49.41), older age at first childbirth (82.57), and being nulliparous (44.19) were the top factors. Finally, in the NN, it was found that being married (50.05), having a marriage age above 30 (18.03), and having other breast disease history (15.83) were the main predicting factors for a delayed BC diagnosis. Conclusion: Machine learning techniques suggest that women with an urban residency who got married or had their first child at an age older than 30 and those without children are at a higher risk of diagnosis delay. It is necessary to educate them about BC risk factors, symptoms, and self-breast examination to shorten the delay in diagnosis. Copyright © 2023 Dehdar, Salimifard, Mohammadi, Marzban, Saadatmand, Fararouei and Dianati-Nasab

    Performance and Methodological Aspects in Positron Emission Tomography

    Get PDF
    Performance standards for Positron emission tomography (PET) were developed to be able to compare systems from different generations and manufacturers. This resulted in the NEMA methodology in North America and the IEC in Europe. In practices, the NEMA NU 2- 2001 is the method of choice today. These standardized methods allow assessment of the physical performance of new commercial dedicated PET/CT tomographs. The point spread in image formation is one of the factors that blur the image. The phenomenon is often called the partial volume effect. Several methods for correcting for partial volume are under research but no real agreement exists on how to solve it. The influence of the effect varies in different clinical settings and it is likely that new methods are needed to solve this problem. Most of the clinical PET work is done in the field of oncology. The whole body PET combined with a CT is the standard investigation today in oncology. Despite the progress in PET imaging technique visualization, especially quantification of small lesions is a challenge. In addition to partial volume, the movement of the object is a significant source of error. The main causes of movement are respiratory and cardiac motions. Most of the new commercial scanners are in addition to cardiac gating, also capable of respiratory gating and this technique has been used in patients with cancer of the thoracic region and patients being studied for the planning of radiation therapy. For routine cardiac applications such as assessment of viability and perfusion only cardiac gating has been used. However, the new targets such as plaque or molecular imaging of new therapies require better control of the cardiac motion also caused by respiratory motion. To overcome these problems in cardiac work, a dual gating approach has been proposed. In this study we investigated the physical performance of a new whole body PET/CT scanner with NEMA standard, compared methods for partial volume correction in PET studies of the brain and developed and tested a new robust method for dual cardiac-respiratory gated PET with phantom, animal and human data. Results from performance measurements showed the feasibility of the new scanner design in 2D and 3D whole body studies. Partial volume was corrected, but there is no best method among those tested as the correction also depends on the radiotracer and its distribution. New methods need to be developed for proper correction. The dual gating algorithm generated is shown to handle dual-gated data, preserving quantification and clearly eliminating the majority of contraction and respiration movementSiirretty Doriast

    A cycle-consistent adversarial network for brain PET partial volume correction without prior anatomical information

    Get PDF
    Purpose: Partial volume effect (PVE) is a consequence of the limited spatial resolution of PET scanners. PVE can cause the intensity values of a particular voxel to be underestimated or overestimated due to the effect of surrounding tracer uptake. We propose a novel partial volume correction (PVC) technique to overcome the adverse effects of PVE on PET images. Methods: Two hundred and twelve clinical brain PET scans, including 50 18F-Fluorodeoxyglucose (18F-FDG), 50 18F-Flortaucipir, 36 18F-Flutemetamol, and 76 18F-FluoroDOPA, and their corresponding T1-weighted MR images were enrolled in this study. The Iterative Yang technique was used for PVC as a reference or surrogate of the ground truth for evaluation. A cycle-consistent adversarial network (CycleGAN) was trained to directly map non-PVC PET images to PVC PET images. Quantitative analysis using various metrics, including structural similarity index (SSIM), root mean squared error (RMSE), and peak signal-to-noise ratio (PSNR), was performed. Furthermore, voxel-wise and region-wise-based correlations of activity concentration between the predicted and reference images were evaluated through joint histogram and Bland and Altman analysis. In addition, radiomic analysis was performed by calculating 20 radiomic features within 83 brain regions. Finally, a voxel-wise two-sample t-test was used to compare the predicted PVC PET images with reference PVC images for each radiotracer. Results: The Bland and Altman analysis showed the largest and smallest variance for 18F-FDG (95% CI: − 0.29, + 0.33 SUV, mean = 0.02 SUV) and 18F-Flutemetamol (95% CI: − 0.26, + 0.24 SUV, mean = − 0.01 SUV), respectively. The PSNR was lowest (29.64 ± 1.13 dB) for 18F-FDG and highest (36.01 ± 3.26 dB) for 18F-Flutemetamol. The smallest and largest SSIM were achieved for 18F-FDG (0.93 ± 0.01) and 18F-Flutemetamol (0.97 ± 0.01), respectively. The average relative error for the kurtosis radiomic feature was 3.32%, 9.39%, 4.17%, and 4.55%, while it was 4.74%, 8.80%, 7.27%, and 6.81% for NGLDM_contrast feature for 18F-Flutemetamol, 18F-FluoroDOPA, 18F-FDG, and 18F-Flortaucipir, respectively. Conclusion: An end-to-end CycleGAN PVC method was developed and evaluated. Our model generates PVC images from the original non-PVC PET images without requiring additional anatomical information, such as MRI or CT. Our model eliminates the need for accurate registration or segmentation or PET scanner system response characterization. In addition, no assumptions regarding anatomical structure size, homogeneity, boundary, or background level are required. © 2023, The Author(s)

    Differences of Various Region-of-Interest Methods for Measuring Dopamine Transporter Availability Using T

    Get PDF
    This study was to investigate whether various region-of-interest (ROI) methods for measuring dopamine transporter (DAT) availabilities by single photon emission computed tomography (SPECT) are statistically different, whether results of medical research are thereby influenced, and causes of these differences. Eighty-four healthy adults with Tc99m-TRODAT-1 SPECT and magnetic resonance imaging (MRI) scans were included. Six major analysis approaches were compared: (1) ROI drawn on the coregistered MRI; (2) ROIs drawn on the SPECT images; (3) standard ROI templates; (4) threshold-ROIs; (5) atlas-based mappings with coregistered MRI; and (6) atlas-based mappings with SPECT images. Using the atlas-based approaches we assessed the influence of striatum ROIs by slice-wise and voxel-wise comparisons. In (5) and (6), three partial-volume correction (PVC) methods were also explored. The results showed that DAT availabilities obtained from different methods were closely related but quite different and leaded to significant differences in determining the declines of DAT availability per decade (range: 5.95–11.99%). Use of 3D whole-striatum or more transverse slices could avoid biases in measuring the striatal DAT declines per decade. Atlas-based methods with PVC may be the preferable methods for medical research
    • …
    corecore